×

Partial properness and the Jacobian conjecture. (English) Zbl 0858.14006

The author, using his own results [ibid. 9, No. 1, 27-32 (1996; Zbl 0857.57022)], proves the following theorem on injectivity of regular maps:
Let \(L,M\) and \(N\) be connected complex algebraic manifolds, \(M,N\) simply connected, and \(h=(f,g)\): \(N \mapsto L \times M\) be a regular local homeomorphism. If \(\lambda\) is a connected component of a fiber \(f^{-1}(u)\), \(u \in L\), then \(h\) is a homeomorphism if and only if \(g|\lambda\) is proper and \(f\) is proper on all the connected components of fibers of \(g\) that intersect \(\lambda\).
The author also gives applications to the two-dimensional Jacobian conjecture \((L=M=N=\mathbb{C})\) for \(F =(P,Q)\): \(\mathbb{C}^2 \mapsto \mathbb{C}^2\), \(P,Q\) polynomials, \(\text{Jac} (F) \equiv 1\). One of them is a generalization of the result by J. Chadzyński and the reviewer [Bull. Soc. Sci. Lett. Łódź, Sér. Rech. Déform. 14(1992/1993), No. 131-140, 13-19 (1993)] that if \(Q\) is proper on a fiber \(P^{-1} (u)\), \(u\in \mathbb{C}\), then \(F\) is a polynomial automorphism. The author shows that it suffices to assume that \(Q\) is proper on only one connected component of \(P^{-1} (u)\) (the last statement can be reduced to the above mentioned result because one can easily show that \(Q\) must be proper on the remaining connected components).

MSC:

14H37 Automorphisms of curves
13F20 Polynomial rings and ideals; rings of integer-valued polynomials

Citations:

Zbl 0857.57022
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bass, H.; Connell, F. H.; Wright, D., The Jacobian conjecture: Reduction of degree and formal expansion of the inverse, Bulletin of the American Mathematical Society, 7, 2, 287-330 (1982), (New Series) · Zbl 0539.13012
[2] Drużkowski, L. M., A geometric approach to the Jacobian conjecture in
((C^2\), Ann. Polon. Math., 55, 95-101 (1991) · Zbl 0772.14006
[3] Chadzyński, J.; Krasiński, T., Properness and the Jacobian conjecture in \(C^2\), Bull. Soc. Sci. Lett. Lódź Sér. Rech. Déform., 14, 132, 13-19 (1992-1993) · Zbl 0887.32008
[4] Campbell, L. A., Global univalence of partially proper local homeomorphisms, Appl. Math. Lett., 9, 1, 27-32 (1996) · Zbl 0857.57022
[5] Hadamard, M. J., Sur les correspondences ponctuelles, (Oeuvres (1968), Editions du Centre Nationale de la Recherche Scientifique: Editions du Centre Nationale de la Recherche Scientifique Paris), 383-384
[6] L.A. Campbell, Partial properness and real planar maps, Appl. Math. Lett.; L.A. Campbell, Partial properness and real planar maps, Appl. Math. Lett. · Zbl 0985.26005
[7] Pinchuk, S., A counterexample to the strong real Jacobian conjecture, Math. Zeitschrift, 217, 1-4 (1994) · Zbl 0874.26008
[8] Kishimoto, K.; Nowicki, A., A note on the Jacobian conjecture in two variables, J. Fac. Sci. Shinshu Univ., 22, 1, 11-12 (1987) · Zbl 0642.13014
[9] Stein, Y., On linear differential operators related to the Jacobian conjecture, J. Pure Appl. Algebra, 57, 2, 175-186 (1989) · Zbl 0673.32005
[10] Stein, Y., On the density of image of differential operators generated by polynomials, J. Analyse Math., 52, 292-300 (1989)
[11] Kaliman, S., On the Jacobian conjecture, (Proc. Amer. Math. Soc., 117 (1993)), 45-51, (1) · Zbl 0782.13017
[12] Chadzyński, J.; Krasiński, T., Exponent of growth of polynomial mappings of \(C^2\) to \(C^2\), (Singularities (1988), Banach Cent. Publ., PWN: Banach Cent. Publ., PWN Warsaw), 147-160
[13] Gwoździewicz, J., Injectivity on one line, Bull. Soc. Sci. Lettres Lódź Sér. Rech. Déform., 15, 7, 59-60 (1993) · Zbl 0872.14006
[14] Mumford, D., (Algebraic Geometry I. Complex Projective Varieties, Volume 221 of Grundlehren der mathematischen Wissenschaften (1976), Springer-Verlag) · Zbl 0356.14002
[15] Hartshorne, R., (Algebraic Geometry, Volume 52 of Graduate Texts in Mathematics (1977), Springer-Verlag) · Zbl 0367.14001
[16] Campbell, L. A., A condition for a polynomial map to be invertible, Math. Ann., 205, 243-248 (1973) · Zbl 0245.13005
[17] Ax, J., Injective endomorphisms of varieties and schemes, Pacific J. of Math., 31, 1-7 (1969) · Zbl 0194.52001
[18] Abhyankar, S. S.; Moh, T. T., Embeddings of the line in the plane, J. Reine u. Angew. Math., 276, 149-166 (1975) · Zbl 0332.14004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.