×

The local time of iterated Brownian motion. (English) Zbl 0857.60081

The study of the iterated Brownian motion \(H=\{H(t): = W_1(|W_2(t) |)\), \(t\geq 0\}\), where \(W_1\) and \(W_2\) are two independent Wiener processes, has motivated numerous works in the recent years. The purpose of the paper is to investigate the local time processes \(L^* = \{L^*(x,t), x\in {\mathbf R}\) and \(t \geq 0\}\) of \(H\), which is formally defined as \(L^*(x,t) = \int^t_0 \delta_x (H(s))ds\), where \(\delta_x\) stands for the Dirac point mass at \(x\). The authors establish a strong approximation result for \(L^*(x,t)\) in terms of the number of visits of a given site by an iterated (simple symmetric) random walk. Further results on the regularity of the local time process are proven, including the so-called upper-upper, upper-lower, lower-upper and lower-lower classes.
Reviewer: J.Bertoin (Paris)

MSC:

60J65 Brownian motion
60J55 Local time and additive functionals
60F15 Strong limit theorems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arcones, M. A. (1995). On the law of the iterated logarithm for Gaussian processes and their compositions.J. Theoret. Prob. 8, 877–903. · Zbl 0839.60040 · doi:10.1007/BF02410116
[2] Bertoin, J. (1994). Iterated Brownian motion and stable (1/4) subordinator. (Preprint). · Zbl 0854.60082
[3] Borodin, A. N. (1989). Brownian local time (in Russian).Uspehi Mat. Nauk (N.S.)44, (2)(266), 7–48. English translation:Russian Math. Surveys 44, 2, 1–51.
[4] Burdzy, K. (1993). Some path properties of iterated Brownian motion. In Cinlar, E., Chung, K. L., and Sharpe, M. (eds.),Seminar on Stochastic Processes 1992, Birkhäuser, Boston, pp. 67–87. · Zbl 0789.60060
[5] Burdzy, K. (1994). Variation of iterated Brownian motion. Workshop and Conference on Measure-valued Processes, Stochastic Partial Differential Equations and Interacting Systems. In Dawson, D. A. (ed.),CRM Proceedings and Lecture Notes 5, pp. 35–53. · Zbl 0803.60077
[6] Burdzy, K., and Khoshnevisan, D. (1995). The level sets of iterated Brownian motion.Probabilities XXIX, Lecture Notes in Math. 1613, pp. 231–236. · Zbl 0853.60061
[7] Csáki, E., Csörgo, M., Földes, A., and Révész, P. (1983). How big are the increments of the local time of a Wiener process?Ann. Prob. 11, 593–608. · Zbl 0545.60074 · doi:10.1214/aop/1176993504
[8] Csáki, E., Csörgo, M., Földes, A., and Révész, P. (1989). Brownian local time approximated by a Wiener sheet.Ann. Prob. 17, 516–537. · Zbl 0674.60072 · doi:10.1214/aop/1176991413
[9] Csáki, E., Csörgo, M., Földes, A., and Révész, P. (1992). Strong approximation of additive functionals.J. Theoret. Prob. 5, 679–706. · Zbl 0762.60024 · doi:10.1007/BF01058725
[10] Csáki, E., Csörgo, M., Földes, A., and Révész, P. (1995). Global Strassen-type theorems for iterated Brownian motions.Stoch. Proc. Appl. 59, 321–341. · Zbl 0843.60072 · doi:10.1016/0304-4149(95)00039-A
[11] Csáki, E., and Földes, A. (1986). How small are the increments of the local time of a Wiener process?Ann. Prob. 14, 533–546. · Zbl 0598.60083 · doi:10.1214/aop/1176992529
[12] Csáki, E., and Földes, A. (1987). A note on the stability of the local time of a Wiener process.Stoch. Proc. Appl. 25, 203–213. · Zbl 0631.60072 · doi:10.1016/0304-4149(87)90198-0
[13] Csörgo, M., Földes, A., and Révész, P. (1993). How to investigate the iterated Brownian motion by Strassen’s method? Technical Report Service Laboratory Research Statistical Probability No. 236-1993, Carleton University, University of Ottawa.
[14] Deheuvels, P., and Mason, D. M. (1992). A functional LIL approach to pointwise Bahadur-Kiefer theorems. In Dudley, R. M., Hahn, M. G., and Kuelbs, J. (eds.),Probability in Banach Spaces 8, Birkhäuser, Boston, pp. 255–266. · Zbl 0844.60012
[15] Dobrushin, R. L. (1955). Two limit theorems for the simplest random walk on a line (in Russian).Uspehi Mat. Nauk (N.S.)10, (3)(65), 139–146.
[16] Funaki, T. (1979). Probabilistic construction of the solution of some higher order parabolic differential equations.Proc. Japan Acad. 55, 176–179. · Zbl 0433.35039 · doi:10.3792/pjaa.55.176
[17] Hu, Y., Pierre-Loti-Viaud, D., and Shi, Z. (1995). Laws of the iterated logarithm for iterated Wiener processes.J. Theoret. Prob. 8, 303–319. · Zbl 0816.60027 · doi:10.1007/BF02212881
[18] Hu, Y., and Shi, Z. (1995). The Csörgo-Révész modulus of non-differentiability of iterated Brownian motion.Stoch. Proc. Appl. 58, 267–279. · Zbl 0833.60033 · doi:10.1016/0304-4149(95)00018-3
[19] Kesten, H. (1965). An iterated logarithm law for local time.Duke Math. J. 32, 447–456. · Zbl 0132.12701 · doi:10.1215/S0012-7094-65-03245-X
[20] Khoshnevisan, D., and Lewis, T. M. (1996). A uniform modulus result for iterated Brownian motion.J. Theoret. Prob. · Zbl 0880.60081
[21] Khoshnevisan, D., and Lewis, T. M. (1996). Chung’s law of the iterated logarithm for iterated Brownian motion.Ann. Inst. H. Poincaré. · Zbl 0859.60025
[22] Kiefer, A. (1967). On Bahadur’s representation of sample quantiles.Ann. Math. Statist. 38, 1323–1342. · Zbl 0158.37005 · doi:10.1214/aoms/1177698690
[23] Lévy, P. (1937).Théorie de l’Addition des Variables Aléatoires, Gauthier-Villars, Paris.
[24] Lévy, P. (1948).Processus Stochastiques et Mouvement Brownian, Gauthier-Villars, Paris. · Zbl 0034.22603
[25] Perkins, E. (1981a). On the iterated logarithm law for local time.Proc. Amer. Math. Soc. 81, 470–472. · Zbl 0455.60064 · doi:10.1090/S0002-9939-1981-0597665-9
[26] Perkins, E. (1981b). The exact Hausdorff measure of the level sets of Brownian motion.Z. Wahrsch. verw. Gebiete 58, 373–388. · Zbl 0458.60076 · doi:10.1007/BF00542642
[27] Rényi, A. (1970).Probability Theory, North Holland, Amsterdam and Akadémiai Kiadó, Budapest.
[28] Révész, P. (1981). Local time and invariance. In:Lecture Notes in Mathematics 861, Analytical Methods in Probability Theory, Proceedings, Oberwolfach, Germany (1980), pp. 128–145.
[29] Révész, P. (1990).Random Walk in Random and Non-Random Environments, World Scientific, Singapore. · Zbl 0733.60091
[30] Shi, Z. (1995). Lower limits of iterated Wiener processes.Statist. Prob. Letters 23, 259–270. · Zbl 0824.60025 · doi:10.1016/0167-7152(94)00123-P
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.