×

Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method. (English) Zbl 0857.35116

Consider the following nonlinear Schrödinger equation: \[ i\hslash\psi_t=- {\hslash^2\over2} \Delta\psi+V(x)\psi- \gamma|\psi |^{p-1}\psi.\tag{1} \] Using a Lyapunov-Schmidt type reduction with a standing wave solution
\(\psi(x,t)=\exp(-i \overline{E}t/\hslash) v(x)\), (1) is reduced to the equation on \(v(x)\): \[ -{\hslash^2\over2}\Delta v-(V(x)-\overline{E})v+ \gamma|\psi |^{p-1}v=0, \qquad x\in\mathbb{R}^N.\tag{2} \] The aim of this paper is to weaken the condition on \(V(x),\) \(\liminf_{x\to\infty} V(x)>\inf_{x\in\mathbb{R}^N} V(x)\) for the existence proof of (2) [cf. P. H. Rabinovitz, Z. Angew. Math. Phys. 43, No. 2, 270-291 (1992; Zbl 0763.35087)]. The author shows this condition can be replaced by \(\inf_{\partial\Omega} V(x)>\inf_\Omega V(x)\), for some bounded region \(\Omega\) in \(\mathbb{R}^N\).
Reviewer: A.Tsutsumi (Osaka)

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35A15 Variational methods applied to PDEs

Citations:

Zbl 0763.35087
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1512/iumj.1992.41.41052 · Zbl 0796.35043 · doi:10.1512/iumj.1992.41.41052
[2] Brezis H., J. Math. Pure et Appl. 58 pp 137– (1979)
[3] Berestycki H., Arch. Rational Mech. Anal. 82 pp 313– (1983)
[4] DOI: 10.1007/BF01444526 · Zbl 0731.34050 · doi:10.1007/BF01444526
[5] DOI: 10.1080/03605309108820811 · Zbl 0753.35034 · doi:10.1080/03605309108820811
[6] DOI: 10.1090/S0894-0347-1991-1119200-3 · doi:10.1090/S0894-0347-1991-1119200-3
[7] DOI: 10.1002/cpa.3160451002 · Zbl 0785.35029 · doi:10.1002/cpa.3160451002
[8] M. del Pino and P. Felmer, Local Mountain Passes for semilinear elliptic problems in unbounded domains, preprint. · Zbl 0844.35032
[9] DOI: 10.1016/0022-1236(86)90096-0 · Zbl 0613.35076 · doi:10.1016/0022-1236(86)90096-0
[10] Gui C., A remark on nonlinear Schrödinger equations
[11] M. del Pino and P. Felmer, Local Mountain Passes for semilinear elliptic problems in unbounded domains, preprint. C. Gui, Multi-peak solutions for a semilinear Neumann problem, preprint. · Zbl 0844.35032
[12] Gilbarg D., Grundlehren Math. Wiss. 224 (1983)
[13] Kwong M.K., Differential Integral Equations 4 pp 583– (1991)
[14] DOI: 10.1002/cpa.3160460302 · Zbl 0799.35068 · doi:10.1002/cpa.3160460302
[15] DOI: 10.1006/jfan.1993.1138 · Zbl 0790.53040 · doi:10.1006/jfan.1993.1138
[16] M. del Pino and P. Felmer, Local Mountain Passes for semilinear elliptic problems in unbounded domains, preprint. C. Gui, Multi-peak solutions for a semilinear Neumann problem, preprint. Y.Y. Li, Prescribing scalar curvature on Sn and related problems, to appear in J. Differential Equations.
[17] Lions P.L., Analyse Nonlin. 1 pp 109– (1984)
[18] DOI: 10.1002/cpa.3160440705 · Zbl 0754.35042 · doi:10.1002/cpa.3160440705
[19] DOI: 10.1080/03605308808820585 · Zbl 0702.35228 · doi:10.1080/03605308808820585
[20] Oh Y.J., Comm. Partial Diff. Eq. 14 pp 833– (1989)
[21] DOI: 10.1007/BF02161413 · Zbl 0753.35097 · doi:10.1007/BF02161413
[22] DOI: 10.1007/BF00946631 · Zbl 0763.35087 · doi:10.1007/BF00946631
[23] Rabinowitz P.H., 65, in: C.B.M.S. Reg. Conf. (1986)
[24] Rabinowitz P.H., Nonlinear Analysis, a tribute in honor of Giovanni Prodi pp 307– (1991)
[25] DOI: 10.1007/BF02570817 · Zbl 0725.58017 · doi:10.1007/BF02570817
[26] DOI: 10.1007/BF02096642 · Zbl 0795.35118 · doi:10.1007/BF02096642
[27] DOI: 10.1016/0362-546X(88)90061-2 · Zbl 0671.35023 · doi:10.1016/0362-546X(88)90061-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.