Language:   Search:   Contact
Zentralblatt MATH has released its new interface!
For an improved author identification, see the new author database of ZBMATH.

Query:
Fill in the form and click »Search«...
Format:
Display: entries per page entries
Zbl 0849.35052
Morgan, J.J.; Hollis, S.L.
The existence of periodic solutions to reaction-diffusion systems with periodic data.
(English)
[J] SIAM J. Math. Anal. 26, No.5, 1225-1232 (1995). ISSN 0036-1410; ISSN 1095-7154/e

The authors consider the parabolic system $$u_t= D(t) \Delta u+ f(x, t, u)\quad \text{in} \quad \Omega\times (0, \infty),$$ where $u= (u_1,\dots, u_m)$, $D= \text{diag}(d_i(t))$, $0< a\le d_i(t)\le b$, $\Omega\subset \bbfR^n$ bounded with smooth boundary, together with boundary conditions $u(x, t)= g(x, t)\ge 0$ on $\partial\Omega\times (0, \infty)$, $u(x, 0)= u_0(x)\ge 0$ in $\overline\Omega$. The main result states that this problem has a nonnegative $T$-periodic solution if $D(t)$ and $f(x, t, \xi)$ are $T$-periodic in $t$, $f$ is quasipositive ($f_i\ge 0$ if $\xi\ge 0$, $\xi_i= 0$) and growth conditions $|f(x, t, \xi)|\le K(1+ |\xi|^p)$, $\sum^i_{j= 1} \alpha_{ij} f_j(x, t, \xi)\le K(1+ \sum^m_1 \xi_j)$ for $\xi\ge 0$ with $\alpha_{ij}\ge 0$, $a_{ii}> 0$ ($i= 1,\dots, m$ with a special provision for $i= m$) hold.\par The proof uses a fixed point argument for the PoincarĂ© map $u_0\mapsto u(., T)$. It carries over to Robin type boundary condition; in the Neumann case a more stringent growth condition on $f$ is required.
[W.Walter (Karlsruhe)]
MSC 2000:
*35K57 Reaction-diffusion equations
35B10 Periodic solutions of PDE
35K40 Systems of parabolic equations, general

Highlights
Master Server