×

On a certain nonary cubic form and related equations. (English) Zbl 0847.11052

Let \(S_3(P; 1, 3)\) denote the number of solutions of the system \[ x^3+ y^3+ z^3= X^3+ Y^3+ Z^3,\quad x+ y+ z= X+ Y+ Z, \]
\[ 1\leq x, y, z, X, Y, Z\leq P. \] L.-K. Hua [Additive theory of prime numbers, Am. Math. Soc. (1965; Zbl 0192.39304)] showed \(S_3(P; 1,3)\ll P^3\log^9 P\), this being of importance in connection with Weyl’s inequality an d Hua’s lemma. By elementary but intricate methods the authors establish a much more precise result \(S_3(P; 1, 3)= 6P^3+ U(P)\), where \(P^2\log^5 P\ll U(P)\ll P^2\log^5 P\). Here, the term \(6P^3\) arises from the “trivial” solutions in which \(x\), \(y\), \(z\) are a permutation of \(X\), \(Y\), \(Z\). They suggest that their methods might lead to an asymptotic formula for the number \(U(P)\) of non-trivial solutions, but this has not yet been done, because of the further complications that would appear likely to be involved.
Further, let \(S_s(P; k)\) denote the number of solutions of the system \(\sum^s_{i= 1} (x^{k_j}_i- y^{k_j}_i)= 0\) \((j= 1,\dots, t)\) with \(1\leq x_i\), \(y_i\leq P\). They record relatively weaker upper bounds (of the form \(\ll P^{s- \delta}\) with explicit \(\delta= \delta_s> 0\)) for the quantities analogous to \(U(P)\) in the two cases \(k= \{1, 2,\dots, s- 2, s\}\), \(k= \{1, 2,\dots, s- 1\}\), the last of which is a case of Vinogradov’s mean value theorem.

MSC:

11P05 Waring’s problem and variants

Citations:

Zbl 0192.39304
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] V. Batyrev and Yu. Manin, Sur le nombre des points rationnels de hauteur borné des variétés algébriques , Math. Ann. 286 (1990), no. 1-3, 27-43. · Zbl 0679.14008 · doi:10.1007/BF01453564
[2] B. C. Berndt and S. Bhargava, A remarkable identity found in Ramanujan’s third notebook , Glasgow Math. J. 34 (1992), no. 3, 341-345. · Zbl 0760.11010 · doi:10.1017/S0017089500008910
[3] B. J. Birch, Forms in many variables , Proc. Roy. Soc. Ser. A 265 (1961/1962), 245-263. · Zbl 0103.03102 · doi:10.1098/rspa.1962.0007
[4] K. D. Boklan, The asymptotic formula in Waring’s problem , Mathematika 41 (1994), no. 2, 329-347. · Zbl 0815.11050 · doi:10.1112/S0025579300007439
[5] A. Bremner, A geometric approach to equal sums of fifth powers , J. Number Theory 13 (1981), no. 3, 337-354. · Zbl 0472.10020 · doi:10.1016/0022-314X(81)90019-6
[6] A. Bremner, A geometric approach to equal sums of sixth powers , Proc. London Math. Soc. (3) 43 (1981), no. 3, 544-581. · Zbl 0414.14026 · doi:10.1112/plms/s3-43.3.544
[7] A. Bremner and S. Brudno, A complete determination of the zeros of weight-\(1\;6j\) coefficients , J. Math. Phys. 27 (1986), no. 11, 2613-2615. · Zbl 0622.10011 · doi:10.1063/1.527279
[8] J. W. S. Cassels and M. J. T. Guy, On the Hasse principle for cubic surfaces , Mathematika 13 (1966), 111-120. · Zbl 0151.03405 · doi:10.1112/S0025579300003879
[9] A. Choudhry, Symmetric Diophantine systems , Acta Arith. 59 (1991), no. 3, 291-307. · Zbl 0744.11017
[10] L. E. Dickson, History of the Theory of Numbers, vol. 2 , Chelsea, New York, 1952.
[11] W. Duke, Z. Rudnick, and P. Sarnak, Density of integer points on affine homogeneous varieties , Duke Math. J. 71 (1993), no. 1, 143-179. · Zbl 0798.11024 · doi:10.1215/S0012-7094-93-07107-4
[12] J. Franke, Yu. Manin, and Y. Tschinkel, Rational points of bounded height on Fano varieties , Invent. Math. 95 (1989), no. 2, 421-435. · Zbl 0674.14012 · doi:10.1007/BF01393904
[13] A. Gloden, Mehrgradige Gleichungen , Mit einem Vorwort von Maurice Kraitchik, P. Noordhoff, Groningen, 1944. · Zbl 0061.06910
[14] G. Greaves, On the representation of a number as a sum of two fourth powers , Math. Z. 94 (1966), 223-234. · Zbl 0151.03802 · doi:10.1007/BF01111351
[15] G. Greaves, Some diophantine equations with almost all solutions trivial , submitted to Mathematika. · Zbl 0880.11031 · doi:10.1112/S002557930001192X
[16] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers , fifth edition ed., Clarendon Press, Oxford, 1989, fourth reprint. · Zbl 0020.29201
[17] D. R. Heath-Brown, Weyl’s inequality, Hua’s inequality, and Waring’s problem , J. London Math. Soc. (2) 38 (1988), no. 2, 216-230. · Zbl 0619.10046 · doi:10.1112/jlms/s2-38.2.216
[18] C. Hooley, On the representations of a number as the sum of two cubes , Math. Z. 82 (1963), 259-266. · Zbl 0112.27502 · doi:10.1007/BF01111429
[19] C. Hooley, On the representation of a number as the sum of two \(h\)-th powers , Math. Z. 84 (1964), 126-136. · Zbl 0123.04303 · doi:10.1007/BF01117120
[20] C. Hooley, On the numbers that are representable as the sum of two cubes , J. Reine Angew. Math. 314 (1980), 146-173. · Zbl 0423.10026 · doi:10.1515/crll.1980.314.146
[21] C. Hooley, On another sieve method and the numbers that are a sum of two \(h\)th powers , Proc. London Math. Soc. (3) 43 (1981), no. 1, 73-109. · Zbl 0463.10035 · doi:10.1112/plms/s3-43.1.73
[22] C. Hooley, On Waring’s problem , Acta Math. 157 (1986), no. 1-2, 49-97. · Zbl 0614.10038 · doi:10.1007/BF02392591
[23] C. Hooley, On some topics connected with Waring’s problem , J. Reine Angew. Math. 369 (1986), 110-153. · Zbl 0589.10052 · doi:10.1515/crll.1986.369.110
[24] L.-K. Hua, Additive theory of prime numbers , Translations of Mathematical Monographs, Vol. 13, American Mathematical Society, Providence, R.I., 1965. · Zbl 0192.39304
[25] Y. Katznelson, Singular matrices and a uniform bound for congruence groups of \(\mathrm SL_ n(\mathbf Z)\) , Duke Math. J. 69 (1993), no. 1, 121-136. · Zbl 0785.11050 · doi:10.1215/S0012-7094-93-06906-2
[26] Lang, S., ed., Number theory. III , Encyclopaedia of Mathematical Sciences, vol. 60, Springer-Verlag, Berlin, 1991. · Zbl 0744.14012
[27] Yu. I. Manin, Notes on the arithmetic of Fano threefolds , Compositio Math. 85 (1993), no. 1, 37-55. · Zbl 0780.14022
[28] N. N. Rogovskaya, An asymptotic formula for the number of solutions of a system of equations , Diophantine approximations, Part II (Russian), Moskov. Gos. Univ., Moscow, 1986, pp. 78-84. · Zbl 0648.10010
[29] W. M. Schmidt, The density of integer points on homogeneous varieties , Acta Math. 154 (1985), no. 3-4, 243-296. · Zbl 0561.10010 · doi:10.1007/BF02392473
[30] G. Szekeres, Major arcs in the four cubes problem , J. Austral. Math. Soc. Ser. A 25 (1978), no. 4, 423-437. · Zbl 0389.10033 · doi:10.1017/S1446788700021418
[31] E. C. Titchmarsh, The theory of the Riemann zeta-function , The Clarendon Press Oxford University Press, New York, 1986. · Zbl 0601.10026
[32] R. C. Vaughan, The Hardy-Littlewood method , Cambridge Tracts in Mathematics, vol. 80, Cambridge University Press, Cambridge, 1981. · Zbl 0455.10034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.