×

Reflecting diffusions on Lipschitz domains with cusps – analytic construction and Skorohod representation. (English) Zbl 0840.60070

Let \(D \subset R^d\) be a Euclidean Lipschitz domain and let \(\Delta : = \sum_{ 1 \leq i, j \leq n} a_{ij} (x) \cdot {\partial^2 \over \partial x_i \cdot \partial x_j}\) be an elliptic operator in \(D\) whose coefficients are measurable, symmetric such that \[ c^{-1} |\xi |^2 \leq \sum_{1 \leq i,j \leq n} a_{ij} (x) \xi_i \xi_j \leq c |\xi |^2, \quad \text{for some constant } c > 1, \tag{1} \] and let \({\mathcal E}(u,v)\) be the Dirichlet form on \(H(D)\) associated with \(\Delta\), \[ {\mathcal E} (u,v) = \int_D \sum_{1 \leq i,j \leq n} a_{ij} (x) \cdot \partial_i u(x) \partial_j v(x) dx, \quad \forall u, v \in H^1 (D). \tag{2} \] In order to construct the reflecting diffusion process generated by \(\Delta\) in the closure \(\overline D\) of \(D\), the authors investigate two separated interesting problems, the main results of both of them are presented in subsection 2 while details of proofs are treated respectively in subsections 3-4 and in the last subsections 5-6.
By introducing the notion of cusps boundary points (Assumptions A1–A2) they are able to modify a Sobolev-inequality due to Moser and obtain from that a Green function \(\{G_\lambda (x,y) : \lambda > 0\}\) on \(\overline D \times \overline D\) (off the diagonal) (Theorem 2.1). The standard program is the construction of the resolvent (and its dual) from the above mentioned Green function; then the Feller transition semigroup on \(C_0 (\overline D)\) and finally the associated Hunt process \(M = \{\Omega, X_t, P_x\) \((x \in \overline D)\}\) are obtained, which is actually a conservatrice diffusion (Theorem 2.2). Note that similar results for the case where \(D\) is bounded are also obtained previously by R. F. Bass and P. Hsu [Ann. Probab. 19, No. 2, 486-508 (1991; Zbl 0732.60090)].
While the first problem is more or less of analytical nature the second one is typically of probabilistic nature. The reflecting diffusion process \(M\) is now regarded as the solution of a “semi-martingale problem” and so admits the following Skorokhod representation (Theorem 2.3) for a.s. \(P^x\) \((x \in \overline D)\): \[ X_t^{(i)} - X_0^{(i)} = M_t^{(i)} + \sum^d_{j = 1} \int^t_0 \partial a_{ij} (X_s) ds + \sum^d_{j = 1} \int^t_0 a_{ij} (X_s) n_j (X_s) dL_s,\;t \geq 0,\;1 \leq i \leq n, \tag{3} \] where \(L_t\) denotes the unique AF in the strict sense which is a local time of \(X_t\) associated with the surface measure \(\sigma\) on the boundary \(\partial D\) and where \(M_t^{(i)}\) \((1 \leq i \leq n)\) are continuous AF in the strict sense such that \[ E_x (M_t^{(i)}) = 0, \quad E_x (M_t^{(i)} M_t^{ (j)}) = 2E_x \left[ \int^t_0 a_{ij} (X_s) ds \right], \quad t \geq 0,\;x \in \overline D. \] Note that the case where \(D\) is a two-dimensional cusp was formulated as a “submartingale problem” and treated previously by means of conformal maps by R. D. DeBlassie and E. H. Toby [Probab. Theory Relat. Fields 94, No. 4, 505-524 (1993; Zbl 0791.60070) and Trans. Am. Math. Soc. 339, No. 1, 297-321 (1993; Zbl 0781.60065)].
Reviewer: X.L.Nguyen (Hanoi)

MSC:

60J45 Probabilistic potential theory
60J55 Local time and additive functionals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. A. Adams:Sobolev space, Academic Press, New York San Francisco London, 1975.
[2] R. F. Bass and P. Hsu: The semimartingale structure of reflecting Brownian motif,Proc. A. M. S.,108 (1990), 1007-1010. · Zbl 0694.60075 · doi:10.1090/S0002-9939-1990-1007487-8
[3] R. F. Bass and P. Hsu: Some potential theory for reflecting Brownian motion Hölder and Lipschitz domains,Ann. Probab.,19 (1991), 486-506. · Zbl 0732.60090 · doi:10.1214/aop/1176990437
[4] M. Biroli and U. Mosco: A Saint-Venant principle for Dirichlet forms on discontinuous media,Preprint Series Univ. Bonn SFB,224, 1992. · Zbl 0893.31008
[5] E. A. Carlen, S. Kusuoka and D. W. Stroock: Upper bounds for symmetric Markov transition functions,Ann. Inst. H. Poincaré Probab. Statist.,23 (1987), 245-287. · Zbl 0634.60066
[6] Z. Q. Chen, P. J. Fitzsimmons and R. J. Williams: Quasimartingales and strong Caccioppoli set,Potential Analysis,2 (1993), 219-243. · Zbl 0812.60065 · doi:10.1007/BF01048506
[7] R. D. DeBlassie and E. H. Toby: Reflecting Brownian motion in a cusp,Trans. Am. Math. Soc.,339 (1993), 297-321. · Zbl 0781.60065 · doi:10.2307/2154220
[8] R. D. DeBlassie and E. H. Toby: On the semimartingale representation of reflecting Brownian motion in a cusp,Probab. Theory Relat. Fields,94 (1993), 505-524. · Zbl 0791.60070 · doi:10.1007/BF01192561
[9] M. Fukushima: A construction of reflecting barrier Brownian motions for bounded domains,Osaka J. Math.,4 (1967), 183-215 · Zbl 0317.60033
[10] M. Fukushima: On anL p -estimate of resolvents of Markov processes,Publ. RIMS, Kyoto Univ.,13 (1977), 277-284. · Zbl 0368.60084 · doi:10.2977/prims/1195190108
[11] M. Fukushima: On a decomposition of additive functionals in the strict sense for a symmetric Markov processes, Proc. International Conference on Dirichlet Forms and Stochastic Processes, Beijing, 1993, eds. Z. Ma, M. Röckner, J, Yan, Walter de Gruyter, to appear
[12] M. Fukushima: On a strict decomposition of additive functionals for symmetric diffusion processes,Proc. Japan Acad. to appear · Zbl 0820.60059
[13] M. Fukushima, Y. Oshima and M. Takeda:Dirichlet forms and symmetric Markov processes, Walter de Gruyter, 1994. · Zbl 0838.31001
[14] H. Kunita: General boundary conditions for multi-dimensional diffusion process,J. Math. Kyoto Univ.,10 (1970), 273-335. · Zbl 0204.41502
[15] V. G. Maz’ja:Sobolev spaces, Springer-Verlag, Berlin Heidelberg New york, 1985.
[16] J. Moser: A new proof of de Giorgi’s theorem concerning the regularity problem for elliptic differential equations,Comm. Pure Appl. Math.,13 (1960), 457-468. · Zbl 0111.09301 · doi:10.1002/cpa.3160130308
[17] G. Stampacchia:Equations elliptiques du second ordre à coefficients discontinus, Séminar sur les equations aux de?ivées partielles, Collège de France, 1963.
[18] M. Tomisaki: Superposition of diffusion processes,J. Math. Soc. Japan,32 (1980), 671-696. · Zbl 0442.60078 · doi:10.2969/jmsj/03240671
[19] M. Tomisaki: A construction of diffusion processed with singular product measures,Z. Wahrscheinlichkeitstheorie verw. Gebiete,52 (1980), 51-70. · Zbl 0433.60077 · doi:10.1007/BF00531611
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.