×

Non-holonomic control systems: From steering to stabilization with sinusoids. (English) Zbl 0837.93062

The main purpose of this paper is to present a control law for globally asymptotically stabilizing a class of controllable nonlinear systems without drift. The global result is obtained by introducing saturation functions. Simulation results for stabilizing a simple kinematic model of an automobile are included. The control laws presented have also been extended to the multiple input case by Walsh and Bushwell in 1993.

MSC:

93D15 Stabilization of systems by feedback
70F25 Nonholonomic systems related to the dynamics of a system of particles
93C10 Nonlinear systems in control theory
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] BROCKETT R. W., Differential Geometric Control Theory pp 181– (1983)
[2] CARR J., Applications of Centre Manifold Theory (1981) · Zbl 0464.58001
[3] DOI: 10.1007/BF01211563 · Zbl 0760.93067 · doi:10.1007/BF01211563
[4] DOI: 10.1109/9.280745 · Zbl 0925.93630 · doi:10.1109/9.280745
[5] DOI: 10.1016/0021-8693(90)90156-I · Zbl 0717.17006 · doi:10.1016/0021-8693(90)90156-I
[6] GUCKENHEIMER J., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (1983)
[7] GURVITS , L. , 1992 , Averaging approach to nonholonomic motion planning . Proceedings of the IEEE International Conference on Robotics and Automation , pp. 2541 – 2546 .
[8] HALE J., Ordinary Differential Equations (1969) · Zbl 0186.40901
[9] JACOBS P., Journees Geometrie Algorithmique (1990)
[10] LAFFERRIERE G., Nonholonomic Motion Planning pp 235– (1993) · doi:10.1007/978-1-4615-3176-0_7
[11] LAUMOND , J.P., andSIMéEON , T.,1989,Motion planning for a two degrees of freedom mobile robot with towing. IEEE International Conference on Control and Applications.
[12] DOI: 10.1109/70.88118 · doi:10.1109/70.88118
[13] DOI: 10.1007/BF01211485 · Zbl 0825.93319 · doi:10.1007/BF01211485
[14] DOI: 10.1109/9.277235 · Zbl 0800.93840 · doi:10.1109/9.277235
[15] MURRAY R. M., IFAC Symposium on Nonlinear Control Systems Design (NOLCOS) pp 182– (1992)
[16] DOI: 10.1016/0167-6911(92)90019-O · Zbl 0744.93084 · doi:10.1016/0167-6911(92)90019-O
[17] SAMSON , C. , and AIT-ABDERRAHIM , K. , 1991 , Feedback stabilization of a nonholonomic wheeled mobile robot . Proceedings of the International Conference on Intelligent Robots and Systems (IROS).
[18] SONTAG , E. , 1989 , Remarks on stabilization and input-to-state stability . Proceedings of the 28th Conference on Decision and Control , pp. 1376 – 1378 .
[19] SUSSMANN , H. J. , and LIU , W. , 1991 , Limits of highly oscillatory controls and the approximation of general paths by admissible trajectories . Technical Report SYCON-91-O2 , Rutgers Center for Systems and Control .
[20] DOI: 10.1016/0167-6911(92)90001-9 · Zbl 0752.93053 · doi:10.1016/0167-6911(92)90001-9
[21] TILBURY , D. , LAUMON , J.P. , MURRAY , R. , SASTRY , S. , and WALSH , G. , 1992 , Steering car-like systems with trailers using sinusoids . Proceedings of the IEEE International Conference on Robotics and Automation , pp. 1993 – 1998 .
[22] WALSH , G. and BUSHNELL , L. , 1993 , Stabilization of multiple input chained form control systems . In Proceedings of the IEEE Control and Decision Conference , pp. 959 – 964 .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.