×

Propagation of singularities from singular and infinite points in certain complex-analytic Cauchy problems and an application to the Pompeiu problem. (English) Zbl 0833.35004

Let \(\Gamma\) be an irreducible analytic hypersurface in some domain in \(C^2\). The author investigates the local propagation of singularities of the solution of the Cauchy problem \(u= |\text{grad}(u)|= 0\) on \(\Gamma\) for the complex differential equation \[ u_{zw}+ a(z, w) u_z+ b(z, w) u_w+ c(z, w)u= g(z, w) \] with analytical coefficients. Let \(U\) be a neighborhood of some point \((z_0, w_0)\in \Gamma\) and \(\Gamma= \{f(z,w)= 0\}\) for some analytical function \(f\) on \(U\) such that \(f\) is irreducible in the ring of convergent power series at \((z_0, w_0)\). If \(g(z_0, w_0)= 0\) and if \((z_0, w_0)\) is not a singular point of \(\Gamma\), then the singularity of \(u\) propagates along the bicharacteristic hyperplane \(\{z = z_0\}\) which is tangential to \(\Gamma\). The main result of this paper in its first part is that if \((z_0, w_0)\) is a singular point, then the singularity propagates along both the bicharacteristics \(\{z= z_0\}\) and \(\{w= w_0\}\). In the second part the author investigates the special Cauchy problem \[ 4u_{zw}+ \lambda u= 1,\quad u= |\text{grad}(u)|= 0\quad\text{on }\Gamma, \] where \(\lambda\) is some constant, and \(\Gamma\) is a certain irreducible analytic hypersurface passing the point at infinity. The main result is: The singularity propagates from the infinite point along the bicharacteristic \(\{z= z_0\}\) into the finite space. It has relation with the Pompeiu problem.

MSC:

35A20 Analyticity in context of PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] C. A. Berenstein, An inverse spectral theorem and its relation to the Pompeiu problem , J. Analyse Math. 37 (1980), 128-144. · Zbl 0449.35024 · doi:10.1007/BF02797683
[2] C. A. Berenstein and P. C. Yang, An inverse Neumann problem , J. Reine Angew. Math. 382 (1987), 1-21. · Zbl 0623.35078
[3] J.-E. Björk, Rings of Differential Operators , North-Holland Math. Library, vol. 21, North-Holland, Amsterdam, 1979. · Zbl 0499.13009
[4] E. Brieskorn and H. Knörrer, Plane Algebraic Curves , Birkhäuser, Basel, 1986. · Zbl 0588.14019
[5] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations , McGraw-Hill, New York, 1955. · Zbl 0064.33002
[6] P. J. Davis, The Schwarz Function and its Applications , Carus Math. Monographs, vol. 17, Math. Assoc. America, Buffalo, 1974. · Zbl 0293.30001
[7] P. Ebenfelt, Some results on the Pompeiu problem , Ann. Acad. ci. Fenn. Ser. AI. 18 (1993), no. 2, 323-341. · Zbl 0793.30034
[8] P. Ebenfelt, Singularities of the solution to a certain Cauchy problem and an application to the Pompeiu problem , Duke Math. J. 71 (1993), no. 1, 119-142. · Zbl 0797.35129 · doi:10.1215/S0012-7094-93-07106-2
[9] N. Garofalo and F. Segala, New results on the Pompeiu problem , Trans. Amer. Math. Soc. 325 (1991), no. 1, 273-286. JSTOR: · Zbl 0737.35147 · doi:10.2307/2001671
[10] P. Griffiths and J. Harris, Principles of Algebraic Geometry , Pure Appl. Math., Wiley, New York, 1978. · Zbl 0408.14001
[11] J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations , Dover Publications, New York, 1952. · Zbl 0049.34805
[12] P. Henrici, A survey of I. N. Vekua’s theory of elliptic partial differential equations with analytic coefficients , Z. Angew. Math. Phys. 8 (1957), 169-203. · Zbl 0078.27802 · doi:10.1007/BF01600500
[13] D. Khavinson, Singularities of harmonic functions in \(\mathbbC^n\) , Several Complex Variables and Complex Geometry, Part 3 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, 1991, pp. 207-217. · Zbl 0755.31003
[14] J. Leray, Problème de Cauchy. I. Uniformisation de la solution du problème linéaire analytique de Cauchy près de la variété qui porte les données de Cauchy , Bull. Soc. Math. France 85 (1957), 389-429. · Zbl 0108.09501
[15] B. Malgrange, Équations Differentielles à Coefficients Polynomiaux , Progr. Math., vol. 96, Birkhäuser, Boston, 1991. · Zbl 0764.32001
[16] F. W. J. Olver, Bessel functions of integer order , Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables eds. M. Abramowitz and I. A. Stegun, National Bureau of Standards Applied Mathematics Series, vol. 55, Wiley-Interscience, New York, 1972, pp. 355-434.
[17] H. S. Shapiro, The Schwarz Function and its Generalization to Higher Dimensions , Univ. Arkansas Lecture Notes Math Sci., vol. 9, Wiley, New York, 1992. · Zbl 0784.30036
[18] S. A. Williams, A partial solution of the Pompeiu problem , Math. Ann. 223 (1976), no. 2, 183-190. · Zbl 0329.35045 · doi:10.1007/BF01360881
[19] S. A. Williams, Analyticity of the boundary for Lipschitz domains without the Pompeiu property , Indiana Univ. Math. J. 30 (1981), no. 3, 357-369. · Zbl 0439.35046 · doi:10.1512/iumj.1981.30.30028
[20] L. Zalcman, A bibliographic survey of the Pompeiu problem , Approximation by Solutions of Partial Differential Equations (Hanstholm, 1991) eds. M. Goldstein and W. Haussman, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 365, Kluwer, Dordrecht, 1992, pp. 185-194. · Zbl 0830.26005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.