×

Group inverses of \(M\)-matrices associated with nonnegative matrices having few eigenvalues. (English) Zbl 0833.15004

Several contributions to the study of the group generalized inverse \(A^\#\) of singular irreducible \(M\)-matrices \(A = rI - M\) are given in this note. The first results are explicit formulas for \(A^\#\), if \(M\) is of low rank. They allow to study when \(A^\#\) is an \(M\)-matrix, too. These results are applied to two interesting classes of matrices \(M\), namely doubly regular tournament matrices and magic squares of order \(4k\), as they are produced by MATLAB. Their eigenvalues are determined, and as their ranks are low, the group inverse can be explicitly given. Also their singular values are exhibited.

MSC:

15A09 Theory of matrix inversion and generalized inverses
15B48 Positive matrices and their generalizations; cones of matrices
05B15 Orthogonal arrays, Latin squares, Room squares

Software:

Matlab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aergerter, M. J., Construction of test matrices, Comm. ACM 2, 8, 10-12 (1959) · Zbl 0094.11805
[2] Andrews, W. S., Magic Squares and Cubes (1960), Dover: Dover New York · Zbl 1003.05500
[3] Ben-Israel, A.; Greville, T. N., Generalized Inverses: Theory and Applications (1973), Academic: Academic New York
[4] Berman, A.; Plemmons, R. J., Nonnegative Matrices in the Mathematical Sciences (1979), Academic: Academic New York · Zbl 0484.15016
[5] Y. Chen, S. J. Kirkland, and M. Neumann, Nonnegative alternating circulants leading to \(M\)Linear Algebra Appl.; Y. Chen, S. J. Kirkland, and M. Neumann, Nonnegative alternating circulants leading to \(M\)Linear Algebra Appl. · Zbl 0841.15005
[6] Cohen, J. E., Derivatives of the spectral radius as a function of a nonnegative matrix, (Math. Proc. Cambridge Philos. Soc., 83 (1978)), 183-190 · Zbl 0374.15007
[7] Cohen, J. E., Random evolutions and the spectral radius of a nonnegative matrix element, (Math. Proc. Cambridge Philos. Soc., 86 (1979)), 343-350
[8] Cohen, J. E., Convexity of the dominant eigenvalue of an essentially non-negative matrix, (Proc. Amer. Math. Soc., 81 (1981)), 657-658 · Zbl 0459.15011
[9] De Caen, D.; Gregory, D. A.; Kirkland, S. J.; Pullman, N. J.; Maybee, J. S., Algebraic multiplicity of eigenvalues of a tournament matrix, Linear Algebra Appl., 169, 179-193 (1992) · Zbl 0758.15012
[10] Deutsch, E.; Neumann, M., Derivatives of the Perron root at an essentially nonnegative matrix and the group inverse of an \(M\)-matrix, J. Math. Anal. Appl., 102, 1-29 (1984) · Zbl 0545.15008
[11] Deutsch, E.; Neumann, M., On the first and second order derivatives of the Perron vector, Linear Algebra Appl., 71, 57-76 (1985) · Zbl 0578.15018
[12] Elsner, L., On convexity properties of the spectral radius of nonnegative matrices, Linear Algebra Appl., 61, 31-35 (1984) · Zbl 0547.15010
[13] Friedland, S., Convex spectral functions, Linear and Multilinear Algebra, 9, 299-316 (1981) · Zbl 0462.15017
[14] Golub, G. H.; Meyer, C. D., Using theQR-factorization and group inversion to compute, differentiate, and estimate the sensitivity of stationary probabilities for Markov chains, SIAM J. Algebraic Discrete Methods, 7, 273-281 (1986) · Zbl 0594.60072
[15] Gregory, R. T.; Karney, D. A., A Collection of Matrices for Testing Computational Algorithms (1969), Wiley-Interscience: Wiley-Interscience New York
[16] Haviv, M.; Ritov, Y.; Rothblum, U. G., Taylor expansions of eigenvalues of perturbed matrices with applications to spectral radii of nonnegative matrices, Linear Algebra Appl., 168, 159-188 (1992) · Zbl 0748.15019
[17] Kirkland, S. J.; Neumann, M., Convexity and concavity of the Perron root and vector of Leslie matrices with applications to a population model, SIAM J. Matrix Anal., 15, 1092-1107 (1994) · Zbl 0811.15007
[18] Meyer, C. D., The role of the group generalized inverse in the theory of finite Markov chains, SIAM Rev., 17, 443-464 (1975) · Zbl 0313.60044
[19] Meyer, C. D., The condition of a finite Markov chain and perturbation bounds for the limiting probabilities, SIAM J. Algebraic Discrete Methods, 1, 273-283 (1980) · Zbl 0498.60071
[20] Meyer, C. D.; Stewart, G. W., Derivatives and perturbations of eigenvectors, SIAM J. Numer. Anal., 25, 679-691 (1988) · Zbl 0646.15005
[21] Moler, C., MATLAB’s magical mystery tour, Mathworks Newslett., 7, 1, 8-9 (1993)
[22] Schmid, J., A remark on characteristic polynomials, Amer. Math. Monthly, 77, 998-999 (1970) · Zbl 0206.03902
[23] Stewart, G. W., Introduction to Matrix Computations (1973), Academic: Academic New York · Zbl 0302.65021
[24] Wilkinson, J. H., The Algebraic Eigenvalue Problem (1965), Oxford U.P.,: Oxford U.P., London · Zbl 0258.65037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.