×

A geometric description of the class invariant homomorphism. (English) Zbl 0833.11055

Let \(F\) be a number field with ring of integers \(O_F\), \(G\) a finite abelian group, \(B\) a Hopf order over \(O_F\) in \(FG\), \(C\) a principal homogeneous space for \(B\); then \(B^*\) acts on \(C\). The class invariant homomorphism \(\varphi_n\), also known as the Picard invariant homomorphism, maps \(C\) in \(PHS (B)\) to the class of \(C\) in \(\text{Pic} (B^*)\).
The author examines this map for \(B_n\) representing the \(O_F\)-group scheme \(\ker [p^n ]= A_{p^n}\) on the Neron model \(A\) of an abelian variety \(A/F\) with everywhere good reduction. The author shows that if \(Q\) is a point in the Cartier dual of \(A(F)\), \(L_Q\) is the line bundle on \(A\) associated to \(Q\), and \(L^n\) is \(L_q\) restricted to \(A_{p^n}\), then the class of \(L_n\) in \(\text{Pic} (A_{p^n})= \text{Pic} (B_n)\) is the same as that of the Kummer order of \(B_n^*\) in the Kummer extension of \(F\) defined by taking \(p^n\)th roots of \(Q\) on \(A\). As a consequence, the author verifies that the map \(\varphi_n\) maps into the primitive elements of \(\text{Pic} (A_{p^n})\). The article concludes with some questions about the image and kernel of \(\varphi_\infty= \varinjlim \varphi_n\).

MSC:

11R33 Integral representations related to algebraic numbers; Galois module structure of rings of integers
14L15 Group schemes
PDFBibTeX XMLCite
Full Text: DOI Numdam EuDML EMIS

References:

[1] Agboola, A., Iwasawa theory of elliptic curves and Galois module structure, Duke Math. J.71 (1973), 441-462. · Zbl 0802.11051
[2] Agboola, A., p-adic representations and Galois module structure, preprint. · Zbl 0864.11055
[3] Agboola, A., Abelian varieties and Galois module structure in global function fields, Math. Z. (to appear). · Zbl 0863.11078
[4] Agboola, A., On p-adic height pairings and locally free classgroups of Hopf orders, in preparation. · Zbl 0967.11046
[5] Agboola, A., Taylor, M.J., Class invariants of Mordell-Weil groups, J. reine angew. Math.447 (1994), 23-61. · Zbl 0799.11049
[6] Byott, N.P., Taylor, M.J., Hopf orders and Galois module structure, in: Group rings and classgroups, K. W. Roggenkamp, M. J. Taylor (eds.), Birkhauser, 1992. · Zbl 0811.11068
[7] Childs, L., Magid, A., The Picard invariant of a principal homogeneous space, J. Pure and Appl. Alg.4 (1974), 273-286. · Zbl 0282.14015
[8] G. Cornell, J. Silverman (eds.), Arithmetic Geometry, Springer, 1986. · Zbl 0596.00007
[9] Faltings, G., Endlichkeitssätze für abelsche Varietäten über Zahlkörpen, Invent. Math.73 (1983), 349-366. · Zbl 0588.14026
[10] Greenberg, R., Iwasawa theory for p-adic representations, Advanced Studies in Pure Mathematics17 (1989), Academic Press, 97-137. · Zbl 0739.11045
[11] Milne, J., Abelian varieties, in: Arithmetic Geometry, G. Cornell, J. Silverman (eds.), Springer, 1986. · Zbl 0604.14028
[12] Mumford, D., Abelian Varieties, OUP, 1970. · Zbl 0223.14022
[13] Perrin-Riou, B., Théorie d’Iwasawa et hauteurs p-adique, Invent. Math.109 (1992), 137-185. · Zbl 0781.14013
[14] Plater, A., Height Pairings on Elliptic Curves, Ph.D. Thesis, Cambridge University, 1991. · Zbl 0846.14021
[15] Ribet, K., Kummer theory on extensions of abelian varieties by tori, Duke Math. J.49 (1979), 745-761. · Zbl 0428.14018
[16] Schneider, P., Iwasawa theory for abelian varieties-a first approach, Invent. Math.71 (1983), 251-293. · Zbl 0511.14010
[17] Serre, J.-P., Algebraic Groups and Class Fields, Springer, 1988. · Zbl 0703.14001
[18] Srivastav, A., Taylor, M.J., Elliptic curves with complex multiplication and Galois module structure, Invent. Math.99 (1990), 165-184. · Zbl 0705.14031
[19] Taylor, M.J., Mordell-Weil groups and the Galois module structure of rings of integers, Ill. J. Math.32 (1988), 428-452. · Zbl 0631.14033
[20] Waterhouse, W., Principal homogeneous spaces and group scheme extensions, AMS Transactions153 (1971), 181-189. · Zbl 0208.48401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.