×

A reaction-diffusion equation on a thin \(L\)-shaped domain. (English) Zbl 0828.35055

The authors study the long-time behaviour of solutions to the equation \(u_t - \Delta u + f(u) = G\), where the spatial variable belongs to a thin \(L\)-shaped domain in \(R^2\). A typical example of such a domain is the set \[ \biggl\{ (x_1, x_2) \bigl |0 < x_1 < 1,\;0 < x_2 < \varepsilon \biggr\} \bigcup \biggl\{ (x_1, x_2) \bigr |0 < x_1 < \varepsilon,\;0 < x_2 < 1 \biggr\} \] with \(\varepsilon > 0\) small. The dynamics is compared with that of the corresponding limit problem for \(\varepsilon = 0\). The limit equation for \(\varepsilon \to 0\) is determined and the upper semicontinuity of the attractors is shown. Moreover, the lower semicontinuity of the attractors is proved provided the equilibrium points of the limit problem are hyperbolic. If the limit equation is one-dimensional, any orbit converges to a singleton provided \(\varepsilon\) is sufficiently close to zero.
Reviewer: E.Feireisl (Praha)

MSC:

35K55 Nonlinear parabolic equations
35B40 Asymptotic behavior of solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Dret, Problemes Variationnels dans les Multi-domaines-Modelisation des Jonctions et Applications (1991)
[2] Lions, Perturbations singulieres dans les problemes aux limites et en controle optimal 323 (1973) · doi:10.1007/BFb0060528
[3] Dret, J. Math. Pures Appl. 68 pp 365– (1989)
[4] Lagnese, Modelling, Analysis and Control of Thin Plates (1988)
[5] Kato, Perturbation Theory for Linear Operators (1966) · Zbl 0148.12601 · doi:10.1007/978-3-642-53393-8
[6] DOI: 10.1070/RM1989v044n03ABEH002116 · Zbl 0711.47003 · doi:10.1070/RM1989v044n03ABEH002116
[7] Hale, Research Notes in Mathematics 132 pp 1– (1985)
[8] Crouzeix, On Numerical Approximation in Bifurcation Theory 13 (1990)
[9] Cioranescu, J. Math. Pures Appl. 65 pp 403– (1986)
[10] Ciarlet, J. Math. Pures Appl. 68 pp 261– (1989)
[11] Ciarlet, C.R. Acad. Sci. Paris, Sir. 1 305 pp 55– (1987)
[12] Ciarlet, Plates and Junctions in Elastic Multi-structures: an Asymptotic Analysis (1990) · Zbl 0706.73046
[13] Céa, Symposia Matematica 10 pp 431– (1972)
[14] DOI: 10.1016/0022-1236(89)90017-7 · Zbl 0699.73010 · doi:10.1016/0022-1236(89)90017-7
[15] Babin, J. Math. Pures Appl. 62 pp 441– (1983)
[16] Raugel, Seminaire du College de France
[17] Raugel, J. Amer. Math. Soc. 6 pp 503– (1993)
[18] Henry, Geometric Theory of Semilinear Parabolic Equations 840 (1981) · Zbl 0456.35001 · doi:10.1007/BFb0089647
[19] Hale, Progress in Partial Differential Equations: the Metz Surveys 2 pp 149– (1993)
[20] DOI: 10.2307/2154084 · Zbl 0761.35052 · doi:10.2307/2154084
[21] DOI: 10.1007/BF00944741 · Zbl 0751.58033 · doi:10.1007/BF00944741
[22] Hale, J. Math. Pures Appl. 71 pp 33– (1992)
[23] Hale, Differential Equations and Mathematical Physics 63–97 (1991)
[24] DOI: 10.1007/BF01790353 · Zbl 0712.47053 · doi:10.1007/BF01790353
[25] Hale, Asymptotic Behavior of Dissipative Systems 25 (1988) · Zbl 0642.58013
[26] Raoult, Asymptotic Anal. 6 pp 73– (1992)
[27] DOI: 10.1016/0022-247X(85)90012-5 · Zbl 0584.35015 · doi:10.1016/0022-247X(85)90012-5
[28] DOI: 10.1007/BF01047051 · Zbl 0741.73025 · doi:10.1007/BF01047051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.