×

On Vandiver’s conjecture. (English) Zbl 0828.11059

The main theorem of the paper is the following: Let \(p\) be a prime of the form \(n^4 + 5n^3 + 15n^2 + 25n + 25\) and let \(K\) be the quintic subfield of \(\mathbb{Q} (\zeta_p + \zeta_p^{- 1})\). There exists \(N_0\) such that for \(p > N_0\), \(p\) divides the class number \(h_K \) if and only if \(p\) divides a Bernoulli number \(B_j\) with \(j = (p - 1)/5\), \(2(p - 1)\), \(3(p - 1)/5\), \(4(p - 1)/5\).
This family of quintic fields was discovered by E. Lehmer [Math. Comput. 50, No. 182, 535-541 (1988; Zbl 0652.12004)]. R. Schoof and the reviewer [Math. Comput. 50, No. 182, 543-556 (1988; Zbl 0649.12007)] determined a set of fundamental units of \(K\) and gave examples where \(h_K\) has a prime factor larger than \(p\).
The interesting aspect of the present theorem is that the divisibility of a Bernoulli number by \(p\) implies that the class number of the real field \(K\) is divisible by \(p\). Usually such criteria apply only to relative class numbers of imaginary fields. The proof constructs a nontrivial homomorphism from the units of \(K\) to \(\mathbb{Z}/p \mathbb{Z}\) that vanishes on the cyclotomic units when \(p\) divides the appropriate Bernoulli number. This technique is also used to study Vandiver’s conjecture under various hypotheses.

MSC:

11R18 Cyclotomic extensions
11R29 Class numbers, class groups, discriminants
11R27 Units and factorization
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Z.I. Borevič and I.R.ŠAfarevIč, Teorija čisel, Izdatelstvo Nauka, Moskva 1972.
[2] P. Denes, Über Grundeinheitssysteme der irregulären Kreiskörper von besonderen Kongruenzeigenschaften. Publ. Math. Debrecen3 (1954), 195–204. · Zbl 0058.26902
[3] P. Denes, Über den zweiten Faktor der Klassenzahl und den Irregularitätsgrad der irregulären Kreiskörper. Publ. Math. Debrecen4 (1956), 163–270. · Zbl 0071.26505
[4] H. Hasse, Vorlesungen über Zahlentheorie, Berlin 1950. · Zbl 0039.03201
[5] S. Jakubec, The Congruence for Gauss’s Period, J. Number Theory, to appear. · Zbl 0807.11049
[6] A.J. Lazarus, Gaussian Periods and Units in Certain Cyclic Fields, Proceedings of AMS, Vol.115, 961–968. · Zbl 0760.11032
[7] E. Lehmer, Connection Between Gaussian Periods and Cyclic Units, Math. Comp.50 (1988), 535–541. · Zbl 0652.12004 · doi:10.1090/S0025-5718-1988-0929551-0
[8] T. Metsänkylä, A Class Number Congruence for Cyclotomic Fields and Their Subfields, Acta Arith.23 (1973), 107–116. · Zbl 0233.12004
[9] C. Moser, Nombre de classes d’une extension cyclique réelle deQ, de degré 4 ou 6 et de conducteur premier, Math. Nachr.102 (1981), 45–52. · Zbl 0506.12003 · doi:10.1002/mana.19811020105
[10] C. Moser andJ.J. Payan, Majoration du nombre de classes d’un corps cubique cyclique de conducteur premier, J. Math. Soc. Japan33 (1981), 701–706. · Zbl 0456.12004 · doi:10.2969/jmsj/03340701
[11] R. Schoof andL.C. Washington, Quintic Polynomials and Real Cyclotomic Fields with Large Class Numbers, Math. Comp.50 (1988), 543–556. · Zbl 0649.12007
[12] L.C. Washington, Introduction to Cyclotomic Fields, Springer-Verlag, New York 1982. · Zbl 0484.12001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.