×

A vanishing theorem “à la Kawamata-Viehweg”. (Un théorème d’annulation “à la Kawamata-Viehweg”.) (French) Zbl 0820.14012

In this article, the author considers nef vector bundles (i.e., the ones whose tautological bundle is nef) of arbitrary rank over smooth projective varieties.
Let \(E\) be an algebraic vector bundle of rank \(r\) on a smooth projective variety \(X\) of dimension \(n\). Let \(s = \{i | 0 \leq i \leq r\}\), Fl\(_ s(E)\) = flag variety on \(E\) of form \(s\), \(N_ s\) = relative dimension on \(X\), and \(\rho =\) a partition of length \(l(\rho)\) \((\leq r)\). Now Fl\(_ s(E)\) admits a line bundle \({\mathfrak L}^ \rho\) whose direct image on \(X\) is the fibre \(S^ \rho (E)\) associated to \(E\) for the irreducible representation of \(GL_ r (\mathbb{C})\) defined by \(\rho\). Using the following result: \[ {c_ 1 ({\mathfrak L}^ \rho)^{n + N_ s} \over (n + N_ s)!} = C_{\rho,r} \sum_{| \pi | = n,l (\pi)\leq l(\rho)} \int_ X {s_ \pi (\rho) s_ \pi (E) \over \prod^{l(\rho)}_{k = 1} (r + \pi_ k - k)!} \] where \(C_{\rho,r} \in \mathbb{Z}^ +\) and \(s_ \pi\) is the Schur polynomial associated to the partition \(\pi\) and \(s_ \pi (E) = \text{det} (c_{\pi^*_ i - i + j} (E))\), \(\pi^*\) being the conjugate partition of \(\pi\) in the Young diagram, the author notes that the coefficient of \(s_ \pi (E)\) is positive, and that \({\mathfrak L}^ \rho\) is nef and big if and only if the Schur polynomial admits strictly positive values on \(X\), whence the Kawamata-Viehweg vanishing theorem gives the following main result of the paper:
If \(E\) is an algebraic vector bundle of rank \(r\), and \(E\) is nef on a smooth projective variety \(X\) of dimension \(n\), and if \({\mathfrak L}\) is a nef line bundle on \(X\) with a partition \(\mu\) such that \(\int s_ \mu (E) > 0\) (which is weaker than \({\mathfrak L}\) big on \(X)\), then for all partitions \(\rho\) of length \(l(\rho) \geq l(\mu)\), \[ H^ q (X,K_ X \otimes S^ \rho E \otimes (\text{det} E)^ l \otimes {\mathfrak L}) = 0,\quad\text{if}\quad q > 0\quad\text{and}\quad l \geq l (\rho). \] Along the way, the author discusses classes of symmetric powers and gives multidimensional versions of Worpitzky’s identity, and in the third section he discusses the self-intersections of line bundles on flag varieties and some expressions for their Euler-Poincaré characteristics. He concludes the section by exploring connections via the Gysin map, on flag varieties, and establishes one between the Chow groups of \(X\) and that of the flag variety Fl\(_ s (E)\).
The conclusion of the paper is the proof of a vanishing theorem as noted in the title.

MSC:

14F17 Vanishing theorems in algebraic geometry
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14C20 Divisors, linear systems, invertible sheaves
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Bott, R.: Homogeneous vector bundles, Ann. of Math.66, 203–248 (1957) · Zbl 0094.35701 · doi:10.2307/1969996
[2] Demailly, J.P.: Vanishing theorems for tensor powers of an ample vector bundle, Invent. Math.91, 203–220 (1988) · Zbl 0647.14005 · doi:10.1007/BF01404918
[3] Foata, D., Schützenberger M.-P.: Théorie géométrique des polynômes eulériens, L. N. 138, Springer-Verlag, 1970
[4] Fulton, W.: Intersection theory, Springer-Verlag, Berlin Heidelberg New-York Tokyo 1984 · Zbl 0541.14005
[5] Fulton, W.: Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J.65, (1992), n.3, 381–420 · Zbl 0788.14044 · doi:10.1215/S0012-7094-92-06516-1
[6] Fulton, W., Lazarsfeld, R.: Positive polynomials for ample vector bundles, Annals of Math.118, 35–60 (1983) · Zbl 0537.14009 · doi:10.2307/2006953
[7] Griffiths, P.A.: Hermitian differential geometry, Chern classes and positive vector bundles, in Global analysis, papers in honor of K.Kodaira, Princeton University Press, Princeton 1969, 185–251 · Zbl 0201.24001
[8] Jozefiak, T., Lascoux, A., Pragacz, P.: Classes of determinantal varieties associated with symmetric and antisymmetric matrices, Math. USSR Izv.18, 575–586 (1982) · Zbl 0489.14020 · doi:10.1070/IM1982v018n03ABEH001400
[9] Kawamata, Y.: A generalization of Kodaira-Ramanujam’s vanishing theorem, Math. Ann.261, 43–46 (1982) · Zbl 0488.14003 · doi:10.1007/BF01456407
[10] Knutson, D.: {\(\lambda\)}-rings and the representation theory of the symmetric group, Lecture Notes308, Springer, 1973 · Zbl 0272.20008
[11] Laksov, D., Lascoux, A., Thorup, A.: On Giambelli’s theorem on complete correlations, Acta Math.162, 143–199 (1989) · Zbl 0695.14023 · doi:10.1007/BF02392836
[12] Lascoux, A.: Classes de Chern d’un produit tensoriel, C. R. Acad. Sci.268, 385–387 (1978) · Zbl 0379.55011
[13] Lascoux, A., Schützenberger, M.-P.: Formulaire raisonné des fonctions symétriques, Prépublication du LITP 323, Université de Paris 7 (1985)
[14] Macdonald, I.G.: Symmetric functions and Hall polynomials, Oxford University Press, 1979 · Zbl 0487.20007
[15] Manivel, L.: Théorèmes d’annulation pour les fibrés associés à un fibré ample, Ann. Sc. N. Sup. Pisa19, 515–565 (1992). · Zbl 0776.32028
[16] Pragacz, P.: Enumerative geometry of degeneracy loci, Ann. Sci. E.N.S.21, 413–454 (1988) · Zbl 0687.14043
[17] Pragacz, P.: Geometric applications of symmetric polynomials: some recent developments, preprint of the Max Planck Institüt für Mathematikn o 92-16
[18] Schneider, M.: Some remarks on vanishing theorems for holomorphic vector bundles, Math. Z.186, 135–142 (1984) · Zbl 0543.32013 · doi:10.1007/BF01215497
[19] Svrtan, D.: New plethysm operation, Chern characters of exterior and symmetric powers with applications to Stiefel-Whitney classes of grass-mannians, in ”Séries formelles et combinatoire algébrique”, Bordeaux 1991, p. 385–396
[20] Viehweg, E.: Vanishing theorems, J. Reine. Angew. Math.335, 1–8 (1982) · Zbl 0485.32019 · doi:10.1515/crll.1982.335.1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.