×

Local limit approximations for Lagrangian distributions. (English) Zbl 0815.60019

The Lagrange distribution, given by \[ P(0) = 0, \quad P(m) = {1\over m!} {d^{m - 1}\over dz^{m - 1}} (f'(z) g^ m(z)),\quad \quad z = 0,\;m = 1,2,\dots, \] with probability generating functions \(f\), \(g\), \(g(0)= 0\), studied for the case that \[ f(z) = \varphi(\lambda z)/\varphi(\lambda),\quad\quad g(z) = \psi(\mu z)/\psi(\mu), \] where \(\varphi\), \(\psi\) are power series with non-negative coefficients. Under suitable assumptions on \(\varphi\), \(\psi\), local limit theorems are derived for \(m \to \infty\) with \(\lambda\), \(\mu\) changing appropriately. These results lead to approximations for well-known special distributions of Lagrangian type.

MSC:

60F05 Central limit and other weak theorems
60E10 Characteristic functions; other transforms
05A16 Asymptotic enumeration
60C05 Combinatorial probability
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Consul, P. C.,Lagrange and related probability distributions. InEncyclopedia of statistical sciences, Vol. 4 (S. Kotz, N. Johnson, eds.), John Wiley and Sons, New York, 1983, pp. 448–454.
[2] Consul, P. C. andShenton, L. R.,Use of Lagrange expansion for generating generalized probability distributions. SIAM J. Appl. Math.23 (1972), 239–248. · Zbl 0226.60017 · doi:10.1137/0123026
[3] Consul, P. C. andShenton, L. R.,On the probabilistic structure and properties of discrete Lagrangian distributions. InStatistical distributions in scientific work, Vol. 1 (C. Taillie, G. P. Patil, and B. Baldessari, eds.), D. Reidel, Dordrecht-Holland, 1974, pp. 41–57.
[4] De Bruijn, N. G.,Asymptotic methods in analysis. North Holland, Amsterdam, 1958. · Zbl 0082.04202
[5] Good, I. J.,The generalization of Lagrange’s expansion and the enumeration of trees. Proc. Cambridge Philos. Soc.61 (1965), 499–517. · Zbl 0142.41204 · doi:10.1017/S0305004100004060
[6] Good, I. J.,The Lagrange distributions and branching processes. SIAM J. Appl. Math.28 (1975), 270–275. · Zbl 0294.60062 · doi:10.1137/0128022
[7] Hayman, W. K.,A generalization of Stirling’s formula. J. Reine Angew. Math.196 (1956), 67–95. · Zbl 0072.06901 · doi:10.1515/crll.1956.196.67
[8] Hurwitz, A. andCourant, R.,Allgemeine Funktionentheorie und elliptische Funktionen. Geometrische Funktionentheorie. Springer-Verlag, Berlin, 1964. · Zbl 0135.12101
[9] Kolchin, V. F.,Random mappings. Optimization Software, New York, 1986. · Zbl 0605.60010
[10] Loéve, M.,Probability theory (2nd ed.). Van Nostrand, Princeton, 1960. · Zbl 0095.12201
[11] Lukacs, E.,Characteristic functions. Griffin, London, 1970. · Zbl 0201.20404
[12] Meir, A. andMoon, J. W.,On the altitude of nodes in random trees. Canad. J. Math.30 (1978), 997–1015. · Zbl 0394.05015 · doi:10.4153/CJM-1978-085-0
[13] Meir, A. andMoon, J. W.,The asymptotic behaviour of coefficients of powers in certain generating functions. European J. Combin.11 (1990), 581–587. · Zbl 0735.05008
[14] Meir, A., Moon, J. W. andMycielski, J.,Hereditarily finite sets and identity trees. J. Combin. Theory Ser. B35 (1983), 142–155. · Zbl 0522.05024 · doi:10.1016/0095-8956(83)90068-0
[15] Mutafchiev, L. R.,Local limit theorems for sums of power series distributed random variables and for the number of components in labelled relational structures. Random Structures Algorithms3 (1992), 403–426. · Zbl 0769.60021 · doi:10.1002/rsa.3240030405
[16] Odlyzko, A. M. andRichmond, L. B.,Asymptotic expansions for the coefficients of analytic generating functions. Aequationes Math.28 (1985), 50–63. · Zbl 0557.05040 · doi:10.1007/BF02189391
[17] Riordan, J.,Combinatorial identities. John Wiley, New York, 1968. · Zbl 0194.00502
[18] Steyaert, J.-M. andFlajolet, P.,Patterns and pattern-matching in trees:an analysis. Inform. and Control58 (1983), 19–58. · Zbl 0567.68053 · doi:10.1016/S0019-9958(83)80056-4
[19] Stromberg, K. R.,Introduction to classical real analysis. Wadsworth, New York, 1981. · Zbl 0454.26001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.