×

Decomposition of Mal’cev-Neumann division algebras with involution. (English) Zbl 0812.16023

We consider a crossed product \(A\) with center \(F\) and which is elementary abelian of exponent 2. Then \(A\) is endowed with an involution \(\sigma\) leaving the maximal subfield \(K\) elementwise invariant. On the other hand, we consider the Mal’cev-Neumann series division algebra associated to \(A\) and endow it with an involution \(\sigma^*\) associated to \(\sigma\). The crossed product generators of \(A\) and of the series division algebra can be chosen fixed by \(\sigma\) and \(\sigma^*\) respectively. This allows us to compute the discriminants of \(\sigma\) and \(\sigma^*\). Then we give necessary and sufficient conditions for the series fields to have a \(\sigma^*\)-invariant quaternion subalgebra or to be decomposable as a tensor product of \(\sigma^*\)-invariant quaternion algebras. Finally we show that if \(A = \text{End}_ FK\) then \(\sigma\) is the adjoint involution with respect to the quadratic form \(q(x) = \text{Tr}_{K/F}(\alpha x^ 2)\) for some \(\alpha\) in \(K\). In this case, if \(\alpha\) is such that \(N_{K/F}(\alpha)\) is in \(F^{*2}\) but \(N_{K/L}(\alpha)\) is not in \(L^{*2}\) for some quadratic subfield \(L\) of \(K\), then the series field is not a tensor product of \(\sigma^*\)-invariant quaternion algebras but the discriminant of \(\sigma^*\) is trivial. Moreover, if the Clifford algebra of \(q\) has index at least 4, the series field has no \(\sigma^*\)-invariant quaternion algebra. We give such an example where the discriminant of \(\sigma^*\) remains trivial.
Reviewer: H.Dherte (Louvain)

MSC:

16K20 Finite-dimensional division rings
16W60 Valuations, completions, formal power series and related constructions (associative rings and algebras)
16S35 Twisted and skew group rings, crossed products
16W10 Rings with involution; Lie, Jordan and other nonassociative structures
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Arason, J.: Cohomologische Invarianten quadratischer Formen. J. Algebra36, 448–491 (1975) · Zbl 0314.12104 · doi:10.1016/0021-8693(75)90145-3
[2] Amitsur, S.A., Rowen, L.H., Tignol, J.-P.: Division algebras of degree 4 and 8 with involution. Isr. J. Math.33, 133–148 (1978) · Zbl 0422.16010 · doi:10.1007/BF02760554
[3] Chacron, M., Dherte, H., Tignol, J.-P., Wadsworth, A.R., Yanchevskii, V.I.: Discriminants of involutions on Henselian division algebras. Pac. J. Math. (to appear) · Zbl 0826.16013
[4] Dherte, H.: Invariants d’algèbres centrales simples à involution. Doctoral dissertation, Université Catholique de Louvain (1992) · Zbl 0835.16012
[5] Jacobson, N.: Clifford Algebras for Algebras with Involution of Type D. J. Algebra1, 288–300 (1964) · Zbl 0135.07401 · doi:10.1016/0021-8693(64)90024-9
[6] Knus, M., Parimala, R., Sridharan, R.: On the discriminant of an involution. Bull. Soc. Math. Belg, Sér. A43, 89–98 (1991) · Zbl 0757.12002
[7] Knus, M., Parimala, R., Sridharan, R.: Involutions on rank 16 central simple algebra. J. Indian Math. Soc.57, 143–151 (1991) · Zbl 0824.16017
[8] Parimala, R., Sridharan R., Suresh, V.: A Question of the Discriminants of Involutions of Central Division Algebras. Math. Ann.297, 575–580 (1993) · Zbl 0803.16013 · doi:10.1007/BF01459519
[9] Rowen, L.H.: Polynomial identities in ring theory. New York, NY: Academic Press 1980 · Zbl 0461.16001
[10] Rowen, L.H.: Central simple algebras. Isr. J. Math.29, 285–301 (1978) · Zbl 0392.16011 · doi:10.1007/BF02762016
[11] Scharlau, W.: Quadratic and Hermitian Forms. (Grundlehren Math. Wiss., Bd. 270) Berlin Heidelberg New York, Springer 1985 · Zbl 0584.10010
[12] Tao, D.: Doctoral dissertation, University of California San Diego (1992)
[13] Tits, J.: Formes quadratiques, groupes orthogonaux et algèbres de Clifford. Invent. Math.5, 19–41 (1968) · Zbl 0155.05202 · doi:10.1007/BF01404536
[14] Tignol, J.-P.: Cyclic and elementary abelian subfields of Mal’cev-Neumann division algebras. J. Pure Appl. Algebra42, 199–220 (1986) · Zbl 0602.16020 · doi:10.1016/0022-4049(86)90080-0
[15] Yanchevskii, V.I.: Oral communication
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.