×

Compact differentiable transformation groups on exotic spheres. (English) Zbl 0808.57026

Exotic spheres constitute a natural family of fundamental testing spaces in the study of differentiable transformation groups. A systematic study of the symmetry properties of exotic spheres in \(\Sigma^ n\) is certainly also a natural way to improve our understanding of the rather mysterious structure of this family. We shall focus attention on a comparison study between large compact subgroups \(G\) of \(\text{Diff} (S^ n)\) and \(\text{Diff} (\Sigma^ n)\), as a natural testing ground for developing techniques in transformation groups which are truly sensitive to the change of differentiable structures. The notion of geometric weight system, introduced by Wu-yi Hsiang in the 1970’s, enables us to analyze the possible imbeddings \(G \subset \text{Diff}(\Sigma^ n)\) by combinatorial means, in a way parallel to the classical representation theory.
A simple measure of symmetry of a manifold \(M\) is the maximum dimension \(N(M)\) of compact Lie subgroups of \(\text{Diff}(M)\). The paper combines the technique of geometric weight system with the concordance classification of regular actions of classical groups to calculate the numbers \(N(\Sigma^ n)\) for all exotic spheres of Kervaire or Milnor type, and moreover, to prove that \(N(\Sigma^ n) < (3/2) (n+1)\) in the remaining cases \(\Sigma^ n \notin bP_{n + 1}\).

MSC:

57S15 Compact Lie groups of differentiable transformations
57R60 Homotopy spheres, Poincaré conjecture
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Borel, A.: Seminar on transformation groups. (Ann. Math. Stud., vol. 46) Princeton: Princeton University Press 1960 · Zbl 0091.37202
[2] Bredon, G.: Transformation groups on spheres with two types of orbits. Topology (1965) · Zbl 0125.40101
[3] Bredon, G.: Introduction to compact transformation groups. New York London: Academic Press 1972 · Zbl 0246.57017
[4] Brieskorn, E.: Beispiele zur Differentialtopologie von Singularit?ten. Invent. Math.2, 1-14 (1966) · Zbl 0145.17804 · doi:10.1007/BF01403388
[5] Browder, W.: Surgery on simply-connected manifolds. (Ergeb. Math., Bd. 65) Berlin Heidelberg New York: Springer 1972 · Zbl 0239.57016
[6] Davis, M.: Multiaxial actions on manifolds. (Lect. Notes Math., vol. 643) Berlin Heidelberg New York: Springer 1978 · Zbl 0366.57010
[7] Davis, M., Hsiang, W.C.: Concordance classes of regularU n and Sp n actions on homotopy spheres. Ann. Math.105(2), 325-341 (1977) · Zbl 0345.57018 · doi:10.2307/1971000
[8] Davis, M., Hsiang, W.C., Morgan, J.: Concordance classes of regularO(n)-actions on homotopy spheres. Acta Math.144 (1980) · Zbl 0453.57026
[9] Hsiang, W.Y.: On the bound of the dimension of the isometry groups of all possible riemannian metrics on an exotic sphere. Ann. Math.85, 351-358 (1967) · Zbl 0152.40703 · doi:10.2307/1970446
[10] Hsiang, W.Y.: Cohomology theory of topological transformation groups. (Ergeb. Math., Bd. 85) Berlin Heidelberg New York: Springer 1975 · Zbl 0429.57011
[11] Hsiang, W.C., Hsiang, W.Y.: On compact subbgroups of the diffeomorphism groups of Kervaire spheres. Ann. Math.85, 359-369 (1967) · Zbl 0152.40604 · doi:10.2307/1970349
[12] Hsiang, W.C., Hsiang, W.Y.: The degree of symmetry of homotopy spheres. Ann. Math.89, 52-67 (1969) · Zbl 0198.56601 · doi:10.2307/1970808
[13] Hsiang, W.C., Hsiang, W.Y.: Differentialble actions of compact connected classical groups. I. Am. J. Math.89, 705-786 (1967) · Zbl 0184.27204 · doi:10.2307/2373241
[14] Hsiang, W.C., Hsiang, W.Y.: On the construction of constant mean curvature imbeddings of exotic and/or knotted spheres intoS n (1). Invent. Math.82, 423-445 (1985) · Zbl 0577.53043 · doi:10.1007/BF01388863
[15] Hsiang, W.C., Hsiang, W.Y.: On the construction of codimension two minimal immersions of exotic spheres into euclidean spheres. II. Math. Z.195, 301-313 (1987) · Zbl 0631.53045 · doi:10.1007/BF01161758
[16] Hsiang, W.Y., Straume, E.: On the orbit structure of SU(n)-actions on manifolds of the type of euclidean, spherical, or projective spaces. Math. Ann.278, 71-93 (1987) · Zbl 0644.57020 · doi:10.1007/BF01458061
[17] Hirzebruch, F: Singularities and exotic spheres, Seminaire Bourbaki, 19e ann?e, 1966/67, no. 314 (1966)
[18] Hirzebruch, F., Mayer, K.H.:O(n)-Mannigfaltigkeiten, exotische Sph?ren und Singularit?ten. (Lect. Notes Math., vol. 57) Berlin Heidelberg New York: Springer 1968 · Zbl 0172.25304
[19] Hitchin, N.: Harmonic spinors. Adv. Math.14, 1-55 (1975) · Zbl 0284.58016 · doi:10.1016/0001-8708(74)90021-8
[20] J?nich, K.: On the classification ofO(n)-manifolds. Math. Ann.176, 53-76 (1968) · Zbl 0153.53801 · doi:10.1007/BF02052956
[21] J?nich, K.: DifferenzierbareG-Mannigfaltigkeiten. (Lect. Notes Math., vol. 59) Berlin Heidelberg New York: Springer 1968
[22] Kervaire, M.: A manifold which does not admit any differentiable structure. Comment. Math. Helv.34, 257-270 (1960) · Zbl 0145.20304 · doi:10.1007/BF02565940
[23] Kervaire, M., Milnor, J.: Groups of homotopy spheres. I. Ann. Math.77, 504-537 (1963) · Zbl 0115.40505 · doi:10.2307/1970128
[24] Lawson, H.B., Yau, S.T.: Scalar curvature nonabelian group actions, and the degree of symmetry of exotic spheres, Comment. Math. Helv.49, 232-244 (1974) · Zbl 0297.57016 · doi:10.1007/BF02566731
[25] Milnor, J.: On manifolds homeomorphic to the 7-spheres. Ann. Math.64, 399-405 (1956) · Zbl 0072.18402 · doi:10.2307/1969983
[26] Schultz, R.: Transformation groups and exotic spheres. (Contemp. Math., vol. 36) Providence, RI: Am. Math. Soc. 1985 · Zbl 0559.57004
[27] Straume, E.: The topological version of groups generated by reflections. Math. Z.176, 429-446 (1981) · Zbl 0456.57016 · doi:10.1007/BF01214618
[28] Straume, E.: Weyl groups and the regularity of certain compact Lie group actions. Trans. Am. Math. Soc.306 (1988) · Zbl 0644.57021
[29] Straume, E.: The integral weight system for torus actions on spheres with no fixed points. Math. Scand.66, 91-109 (1990) · Zbl 0681.57022
[30] Straume, E.:p-weights and their application to regular actions of classical groups. Math. Report, University of Oslo, 1975
[31] Straume, E.: Compact connected Lie transformation groups on spheres with low cohomogeneity, I (1989), II (1991). Univ. of Troms? (to be published) · Zbl 0876.57053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.