×

A Schur-Horn-Kostant convexity theorem for the diffeomorphism group of the annulus. (English) Zbl 0806.22012

B. Kostant [Ann. Sci. Éc. Norm. Supér., IV. Sér. 6, 413-455 (1973; Zbl 0293.22019)] proved a far-reaching generalization of the Schur-Horn theorem on eigenvalues of Hermitian matrices to the case of a general compact Lie group. The authors prove an infinite-dimensional analogue of this result, using the group \(S \text{Diff}({\mathcal A})\), where \({\mathcal A} := \{0 \leq z \leq 1\} \times \{\exp(2\pi i\theta) \mid 0 \leq \theta < 1\}\), of area-preserving diffeomorphisms of the annulus \(\mathcal A\) as an analogue of the group \(\text{SU}(n)\) in the Schur-Horn theory. This group acts on its Lie algebra, the algebra of divergence-free (Hamiltonian) vector fields tangent to the boundary of \(\mathcal A\). The Schur-Horn-Kostant theorem relies on projection onto an orbit of the Weyl group. But since the Weyl group of \(S \text{Diff}({\mathcal A})\) only has two elements, the authors are forced to pass to a completion of \(S \text{Diff}({\mathcal A})\) obtained by extending the adjoint representation to unitary operators on \(L_ 2({\mathcal A})\) and using the strong operator topology. The result is that \(S \text{Diff}\) is dense in the group \(S \text{Meas}({\mathcal A})\) of invertible measure-preserving (MP) transformations of \(\mathcal A\). The main Schur-Horn-Kostant-type result is that the projection of an adjoint orbit onto a “Cartan” subalgebra isomorphic to \(L_ 2([0,1])\) is an infinite-dimensional, weakly compact, convex set, whose extreme points coincide with the orbit (through a certain function) of the “permutation” semigroup of MP transformations of [0,1]. The denseness result follows from a result of S. Alpern that an invertible MP transformation of the square can be approximated by a MP homeomorphism that fixes the boundary of the square (and hence of the annulus) and a result of J. Moser showing that such a homeomorphism of the square can be approximated by a measure-preserving diffeomorphism. The Schur-Horn result relies on results of Ryff on doubly stochastic operators.
Reviewer: J.S.Joel (Kelly)

MSC:

22E65 Infinite-dimensional Lie groups and their Lie algebras: general properties
22E30 Analysis on real and complex Lie groups
28D05 Measure-preserving transformations
47D03 Groups and semigroups of linear operators
37A99 Ergodic theory

Citations:

Zbl 0293.22019
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] [Akh] Akhiezer, N.: The Classical Moment Problem. (Univ. Math. Monogr.) Edinburgh London: Oliver & Boyd 1965
[2] [A1] Alpern, S.: Approximation to and by measure preserving homeomorphisms. J. Lond. Math. Soc.18, 305-315 (1978) · Zbl 0405.28014 · doi:10.1112/jlms/s2-18.2.305
[3] [AP] Atiyah, M.F., Pressley, A.N.: Convexity and loop groups. In: Artin, M., Tate, J. (eds.) Arithmetic and Geometry: papers dedicated to I.R. Shafarevich on the occasion of his sixtieth birthday, vol. 2. Boston Basel Stuttgart: Birkhaüser 1983
[4] [BR] Bao, D., Ratiu, T.: A candidate maximal torus in infinite dimensions. Contemp. Math., vol.132, pp. 117-124. Providence, RI: Am. Math. Soc. 1992, details to appear in another paper · Zbl 0785.22023
[5] [Bi] Birkhoff, G.: Three observations on linear algebra. Rev. Univ. Nac. Tucumán, Ser. A5, 147-151 (1946) (we have only seen the Math. Reviews summary of this paper) · Zbl 0060.07906
[6] [BBKR] Bloch, A.M., Brockett, R. W., Kodama, Y., Ratiu, T.: Spectral equations for the long wave limit of the Toda lattice equations. In: Proceedings of the CRM Workshop on Hamiltonian Systems, Transformation Groups and Spectral Transform Methods, pp. 97-402. Harnad, J., Marsden, J.E. (eds.), Publ. CRM, Montréal 1990
[7] [BBR] Bloch, A.M., Brockett, R. W., Ratiu, T.: A new formulation of the generalized Toda lattice equations and their fixed point analysis via the momentum map. Bull.23, 447-456 (1990)
[8] [Bo] Bogojavlenskiî, O.I.: Lax representations with spectral parameter for some dynamical systems. Izv. Akad. Nauk. SSSR52, 243-266 (1988)
[9] [BB] Brockett, R. W., Block, A.: Sorting with the dispersionless limit of the Toda lattice. In: Proceedings of the CRM Workshop on Hamiltonian Systems, Transformation Groups and Spectral Transform Methods, pp. 103-112, Harnad, J., Marsden, J.E. (eds.) Publ. CRM, Montréal 1990 · Zbl 0738.35083
[10] [Bro] Brockett, R. W.: Dynamical systems that sort lists, solve linear programming problems and diagonalize symmetric matrices. Proc. 1988 IEEE Conference on Decision and Control, 1988. Linear Algebra Appl.122-124, pp. 761-777 (1989)
[11] [Br] Brown, J.R.: Approximation theorems for Markov operators. Pac. J. Math.16, 13-23 (1966) · Zbl 0139.34702
[12] [EM] Ebin, D.G., Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math.92, 102-163 (1970) · Zbl 0211.57401 · doi:10.2307/1970699
[13] [Ha1] Halmos, P.: Approximation theorems for measure preserving transformations. Trans. Am. Math. Soc.55, 1-18 (1944) · Zbl 0063.01890
[14] [Ha2] Halmos, P.: Measure Theory. Princeton, NJ: D. Van Nostrand 1950 · Zbl 0040.16802
[15] [HLP] Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge: Cambridge University Press 1934
[16] [H] Horn, A.: Doubly stochastic matrices and the diagonal of a rotation matrix. Am. J. Math.76 620-630 (1954) · Zbl 0055.24601 · doi:10.2307/2372705
[17] [K] Kostant, B.: On convexity, the Weyl group and the Iwasawa decomposition. Ann. Sci. Éc. Norm. Supér.6, 413-455 (1973) · Zbl 0293.22019
[18] [KP] Kac, V.G., Peterson, D.H.: Unitary structure in representations of infinite-dimensional groups and a convexity theorem. Invent. Math.76, 1-14 (1984) · Zbl 0534.17008 · doi:10.1007/BF01388487
[19] [MO] Marshall, A. W., Olkin, I.: Inequalities: Theory of Majorization and its Applications. New York: Academic Press 1979 · Zbl 0437.26007
[20] [Mo] Moser, J.: Remark on the smooth approximation of volume-preserving homeomorphisms by symplectic diffeomorphisms. Zürich: Forschungsinstitut für Mathematik ETH (Preprint, October 1992)
[21] [Ro] Royden, H.: Real Analysis. New York: Macmillan 1963 · Zbl 0121.05501
[22] [R1] Ryff, J. V.: On the representation of doubly stochastic operators. Pac. J. Math.13, 1379-1386 (1963) · Zbl 0125.08405
[23] [R2] Ryff, J. V.: Orbits ofL 1 functions under doubly stochastic transformations. Trans. Am. Math. Soc.117, 92-100 (1965) · Zbl 0135.18804
[24] [R3] Ryff, J. V.: Extreme points of some convex subsets ofL 1(0, 1). Proc. Am. Math. Soc.18, 1026-1034 (1967) · Zbl 0184.34503
[25] [S] Saks, S.: Theory of the Integral, 2nd ed. (Dover Publ.) New York: Dover 1964 · Zbl 1196.28001
[26] [Sa1] Savieliev, M.V.: Integro-differential nonlinear equations and continual Lie algebras. Commun. Math. Phys.121, 283-290 (1989) · Zbl 0664.45006 · doi:10.1007/BF01217807
[27] [Sa2] Saveliev, M. V.: On the integrability problem of the continuous long wave approximation of the Toda lattice. Lyon: Éc. Norm. Supé. Preprint (1992)
[28] [SV] Saveliev, M. V., Vershik, A.M.: New examples of continuum graded Lie algebras. Phys. Lett.A143, 121-128 (1990) · doi:10.1016/0375-9601(90)90662-8
[29] [Sch] Schur, I.: Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie. Sitzungsber. Berl. Math. Ges.22, 9-20 (1923) · JFM 49.0054.01
[30] [T] Toda, M.: Theory of Nonlinear Lattices. Berlin Heidelberg New York: Springer 1981 · Zbl 0465.70014
[31] [VGG] Vershik, A.M., Gel’fand, I.M., Graev, M.I.: Representation of the group of diffeomorphisms. Usp. Mat. Nauk30 (no. 6), 1-50 (1975)
[32] [WE] Watson, D.S., Elsner, L.: On Rutishauser’s approach to selfsimilar flows. SIAM J. Matrix. Anal. Appl.11, 301-311 (1990) · Zbl 0701.58051 · doi:10.1137/0611020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.