×

A Lefschetz decomposition for Chow motives of abelian schemes. (English) Zbl 0806.14001

Let \(A\) be an abelian variety of dimension \(g\) over a field \(k\) and let \(h(A) = \bigoplus^{2g}_{i = 0} h^ i(A)\) be the Chow motive of \(A\) constructed by C. Deninger and J.-P. Murre [J. Reine Angew. Math. 422, 201-219 (1991; Zbl 0745.14003)]. The author proves the motivic analog of the hard Lefschetz theorem: \(L^{g-i} : h^ i(A) @>\sim>> h^{2g-i} (A)(g-i)\) and of the Lefschetz decomposition theorem \[ h^ i(A) = \bigoplus_ k L^ kP^{i-2k} (A). \] Here \(L\) is the Lefschetz operator associated to a symmetric polarization of \(A\), and \(P^ i(A)\) is a motivic analog of the primitive part in cohomology. The decomposition isomorphism was independently proven by A. J. Scholl [in Motives, Proc. Res. Conf. Motives, Seattle 1991, Proc. Symp. Pure Math. 55, Part 1, 163-187 (1994)].
All these results can be also applied to abelian schemes. As an application the author reproves an earlier result of C. Soulé [Math. Ann. 268, 317-345 (1984; Zbl 0573.14001)] on isomorphism of the Chow groups \(CH^ p (A,\mathbb{Q}) \to CH^{g-p} (A,\mathbb{Q})\), \(2p \leq g\), for any abelian variety \(A\) over a finite field \(k\).

MSC:

14A20 Generalizations (algebraic spaces, stacks)
14K05 Algebraic theory of abelian varieties
14C05 Parametrization (Chow and Hilbert schemes)
14C25 Algebraic cycles
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] [B1] Beauville, A.: Quelques remarques sur la transformation de Fourier dans l’anneau de Chow d’une variété abélienne. In Raynaud, M., Shioda, T. (eds.) Algebraic Geometry, Tokyo/Kyoto 1982 (Lect. Notes Math., vol. 1016, pp. 238-260) Berlin Heidelberg New York: Springer 1983
[2] [B2] beauville, A.: Sur l’anneau de Chow d’une variété abélienne. Math. Ann.273, 647-651 (1986) · Zbl 0576.14005
[3] [Be] Beilinson, A.A.: Height pairings between algebraic cycles. In: Manin, Yu. I. (ed.) K-theory, Arithmetic and Geometry, Moscow 1984-86 (Lect. Notes Math., vol. 1289, pp. 1-25), Berlin Heidelberg New York: Springer 1987 and (Contemp. Math., vol.67, pp. 1-24, Providence, RI: Am. Math. Soc. 1987
[4] [D-M] Deninger, C., Murre, J.: Motivic decomposition of abelian schemes and the Fourier transform. J. Reine Angew. Math.422, 201-219 (1991) · Zbl 0745.14003
[5] [G] Grothendieck, A.: Standard conjectures on algebraic cycles. In: Abhyankhar, S.S. et al (eds.) Algebraic Geometry, Bombay 1968, pp. 193-199. Oxford: Oxford University Press 1969
[6] [Km] Kleiman, S.L.: Algebraic cycles and the Weil conjectures. In: Grothendieck, A., Kuiper N.H. (eds.) Dix exposés sur la cohomologie des schemas, pp. 359-386. Amsterdam: North-Holland 1968
[7] [K1] Künnemann, K.: On the Chow motive of an abelian scheme. In: Jannsen, U., Kleiman, S.L., Serre, J-P (eds.) Proceedings of the conference on motives, Seattle 1991. (Proc. Symp. Pure Math.) Providence, RI: Am. Math. Soc. (to appear)
[8] [K2] Künnemann, K.: Chow Motive von abelschen Schemata und die Fouriertransformation. Dissertation Münster 1992. Schriftenr. Math. Inst. Graduiertenkoll. Univ. Münster, 3. Ser.6 (1992)
[9] [L1] Lieberman, D.I.: Higher Picard varieties. Am. J. Math.90 1165-1199 (1968) · Zbl 0183.25401
[10] [L2] Lieberman, D.I.: Numerical and homological equivalence of algebraic cycles on Hodge manifolds. Am. J. Math.90, 366-374 (1968) · Zbl 0159.50501
[11] [Mm] Mumford, D.: Geometric invariant theory. Berlin Heidelberg New York: Springer 1965 · Zbl 0147.39304
[12] [Mr] Murre, J.: On a conjectural filtration on the Chow groups of an algebraic variety. (Preprint 1992); Indagationes Math. (to appear)
[13] [Sh] Scholl, A.J.: Classical motives. In: Jannsen, U., Kleiman, S. L., SerrE J-P. (eds.) Proceedings of the conference on motives, Seattle 1991. (Proc. Symp. Pure Math.) Providence. RI: Am. Math. Soc. (to appear)
[14] [So] Soulé C.: Groupes de Chow et K-théorie de variétés sur un corps fini. Math. Ann.268, 317-345 (1984) · Zbl 0573.14001
[15] [W] Weil, A.: Introduction á l’étude des variétés kähleriennes, Paris: Hermann 1958
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.