×

A constrained minimization problem with integrals on the entire space. (English) Zbl 0805.49005

Author’s summary: “We consider the question of minimizing functionals defined by improper integrals. Our approach is alternative to the method of concentration-compactness and it does not require the verification of strict subadditivity”.

MSC:

49J35 Existence of solutions for minimax problems
49K15 Optimality conditions for problems involving ordinary differential equations
35J99 Elliptic equations and elliptic systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Pohozaev, S.I., Eigenfunctions of the equation ?u+?f(u)=0. Sov. Math. Doklady 5, 1408-1411 (1965). · Zbl 0141.30202
[2] Strauss, W.A., Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55, 149-162 (1977). · Zbl 0356.35028 · doi:10.1007/BF01626517
[3] Lions, P.L., The Concentration?Compactness Principle in the Calculus of Variations. Ann. Inst. H. Poincaré, Anal. Non Linéare, sec A, 1 (1984), Part I 109-145, Part II 223-283.
[4] Berestycki, H. and Lions, P.L., Nonlinear Scalar Fields Equations, Part I, Arch. Rat. Mech. Analysis 82, 1983, n o 4, 313-345. · Zbl 0533.35029
[5] Berestycki, H., Gallouet, Th., Kavian, O., Equation des Champs Scalaires Euclidiens Nonlineaires dans le Plan, C.R. Ac. Sci. Paris, serie I, Maths, 297 (1983), n o 5, 307-310.
[6] Coleman, S., Glazer, V. and A. Martin, Action minima among solutions to a class of Euclidean scalar field equations; Comm. Math Phys 58(2), 211-221 (1978). · doi:10.1007/BF01609421
[7] Cazenave, T., Lions, P.L., Orbital Stability of Standing Waves for Some Nonlinear Schrödinger Equations. Comm. Math. Phys. 85, 549-561 (1982). · Zbl 0513.35007 · doi:10.1007/BF01403504
[8] Brezis, H., Lieb, E.H., Minimum Action Solutions of Some Vector Field Equations, Comm. Math. Physics, 96 (1984), n o 1, 97-113. · Zbl 0579.35025 · doi:10.1007/BF01217349
[9] Gidas, B., Ni, W.N., and Nirenberg, L., Symmetry and Related Properties via the Maximum Principle, Comm. Math. Phys., 68 (1979), 209-243. · Zbl 0425.35020 · doi:10.1007/BF01221125
[10] Lieb, E.H., On the Lowest Eigenvalue of the Laplacian for the Intersection of Two Domains, Invent. Math., 74 (1983), n o 3, 441-448. · Zbl 0538.35058 · doi:10.1007/BF01394245
[11] Lions, P.L., Solutions of Hartree?Fock Equations for Coulomb Systems, Comm. Math. Phys., 109, 33-97 (1987). · Zbl 0618.35111 · doi:10.1007/BF01205672
[12] Kato, T. Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966. · Zbl 0148.12601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.