Language:   Search:   Contact
Zentralblatt MATH has released its new interface!
For an improved author identification, see the new author database of ZBMATH.

Query:
Fill in the form and click »Search«...
Format:
Display: entries per page entries
Zbl 0801.40005
Kolk, Enno
Matrix summability of statistically convergent sequences.
(English)
[J] Analysis 13, No.1-2, 77-83 (1993). ISSN 0174-4747

Let $K$ be an index set and $\varphi\sp K:= (\varphi\sb j\sp K)$ be defined by $\varphi\sb j\sp K=1$ $(j\in k)$, $\varphi\sb j\sp K=0$ otherwise. For a non-negative regular $(c\to c)$ matrix $A$, the $A$- density of $K$ is $\delta\sb A(K):= \lim\sb A \varphi\sp K$ whenever $\varphi\sp K\in c\sb A$. For a sequence $x=(x\sb k)\sb{k\geq 1}$ and a number $x\sb 0$, denote $K\sb \varepsilon:= \{k$: $\vert x\sb k- x\sb 0\vert \geq \varepsilon\}$; then $x$ is said to be $A$-statistically convergent to $x\sb 0$ $(x\in \text{st}\sb A)$ if $\delta\sb A (K\sb \varepsilon)=0$ for every $\varepsilon>0$. We also denote the $K$-section of $x$ as $x\sp{[K]}$, where $x\sb k\sp{[K]}= x\sb k$ $(k\in K)$, $x\sb k\sp{[K]}=0$ otherwise, and a sequence space $X$ is called section-closed if $x\sp{[K]} \in x$ for all $x\in X$ and for every index set $K$. The $K$-column-section of a matrix $B$ is denoted by $B\sp{[K]}:= (b\sb{nk}\sp{[K]})$, where $b\sb{nk}\sp{[K]}= b\sb{nk}$ $(k\in K)$, $b\sb{nk}\sp{[K]} =0$ otherwise. For any two sequence spaces $W$, $Y$, we denote by $(W,Y)$ the set of all matrices $H$ which map $W$ into $Y$ $(W\subseteq Y\sb H)$. The main Theorem 4.1 shows: Let $X$ be a section- closed sequence space containing $e:= (1,1,\dots)$ and let $Y$ be an arbitrary sequence space; then $B\in (X\cap \text{st}\sb A,Y)$ if and only if $B\in (X\cap c, Y)$ and $B\sp{[K]}\in (X,Y)$ $(\delta\sb A (K) =0)$. There are some modifications and corollaries, and a final section which considers matrix maps of statistically convergent bounded sequences (where we take $X=\ell\sb \infty$).
[D.C.Russell (Toronto)]
MSC 2000:
*40C05 Matrix methods in summability
40D25 Inclusion theorems, etc.
40J05 Summability in abstract structures
46A45 Sequence spaces
40A05 Convergence of series and sequences

Keywords: statistical summability; sequence spaces; inclusion theorems

Cited in: Zbl 1060.40001

Highlights
Master Server

### Zentralblatt MATH Berlin [Germany]

© FIZ Karlsruhe GmbH

Zentralblatt MATH master server is maintained by the Editorial Office in Berlin, Section Mathematics and Computer Science of FIZ Karlsruhe and is updated daily.

Other Mirror Sites

Copyright © 2013 Zentralblatt MATH | European Mathematical Society | FIZ Karlsruhe | Heidelberg Academy of Sciences