×

\(K_ 3\) and \(p\)- adic Riemann-Hurwitz formulas. (\(K_ 3\) et formules de Riemann-Hurwitz \(p\)-adiques.) (French) Zbl 0801.11049

In the theory of \(\mathbb{Z}_ p\)-extensions of a number field one has the notion of a so-called \(\lambda\)-invariant which plays a role analogous to the genus of an algebraic curve. So, for suitable extensions one may relate the corresponding \(\lambda\)-invariants by a formula of the Riemann-Hurwitz type.
More precisely, let \(F\) be a number field, \(F_ \infty\) its cyclotomic \(\mathbb{Z}_ p\)-extension, and let \({\mathcal X}_ \infty= \text{Gal} (M_ \infty/ F_ \infty)\), where \(M_ \infty\) is the maximal abelian \(p\)- ramified pro-\(p\)-extension of \(F_ \infty\). \(t{\mathcal X}_ \infty\) denotes the \(\Lambda\)-torsion submodule \({\mathcal X}_ \infty\) for the Iwasawa algebra \(\Lambda\). Furthermore, let \(X_ \infty= X_ \infty(F)= \text{Gal} (L_ \infty/ F_ \infty)\), where \(L_ \infty\) is the maximal abelian unramified pro-\(p\)-extension of \(F_ \infty\), and \(X_ \infty'= X_ \infty' (F_ \infty)= \text{Gal} (L_ \infty' /F_ \infty)\), with \(L_ \infty'\subset L_ \infty\) the subextension which totally decomposes all places of \(F_ \infty\). \(\lambda_{S_ p} (F_ \infty)\), \(\lambda(F_ \infty)\) and \(\lambda' (F_ \infty)\) denote the \(\lambda\)-invariants corresponding to \(t{\mathcal X}_ \infty\), \(X_ \infty\) and \(X_ \infty'\), respectively. One can also associate an invariant \(\mu\) to the extension \(F_ \infty/F\). One defines, for an extension \(M/L\), the capitulation \(\text{Cap} (M/L)= \text{Ker} (K_ 2(L)\to K_ 2(M))\).
One can now state the main result of the paper: Assume (a) \(F\) contains the group \(\mu_{2p}\) of \(2p\)th-roots of unity and (b) the \(\mu\)- invariant of \(F_ \infty/F\) vanishes, then, for a \(p\)-extension \(E_ \infty/ F_ \infty\) such that \(\text{Cap} (E_ \infty /F)=0\), one has the formulas: \[ \lambda_{S_ p} (E_ \infty)= \lambda_{S_ p} (F_ \infty)\cdot [E_ \infty: F_ \infty]+ \sum (e_ w -1), \] where the sum runs over all places \(w\) of \(E_ \infty\) not dividing \(p\), and \(e_ w\) is the ramification index of \(E_ \infty /F_ \infty\) in \(w\); \[ \lambda' (E_ \infty)-1= (\lambda' (F_ \infty)-1)\cdot [E_ \infty: F_ \infty]+ \sum (n_ w -1), \] where the sum runs over all places \(w\) of \(E_ \infty\) dividing \(p\) and where \(n_ w\) is the degree of \(E_ \infty/ F_ \infty\) in \(w\).
Similar results were known for CM-fields \(F\). As a matter of fact, one has a relation between \(\lambda_{S_ p}\) and \(\lambda'\) and the second formula can be deduced from the first one. An essential ingredient of the proof of the first formula is the vanishing of a Herbrand quotient involving \(K_ 3 (E_ \infty)\). Here the condition on the capitulation comes into play via a Hochschild-Serre spectral sequence. After an introduction giving some background information on the problem and heuristics for introducing \(K\)-groups, the necessary tools and results on \(K\)-groups for number fields and capitulations are resumed in a special section. The second section is concerned with the statement and the proof of the main results. In the third section two applications are discussed.

MSC:

11S70 \(K\)-theory of local fields
19D99 Higher algebraic \(K\)-theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Brinkhuis, J.:K 2 and Galois extensions of fields,Lecture Notes in Math. 1046, Springer, New York, 1984, pp. 13-28. · Zbl 0525.18009
[2] Coates, J.: OnK 2 and some classical conjectures in algebraic number theory,Ann. Math. 95 (1972), 99-116. · Zbl 0245.12005 · doi:10.2307/1970857
[3] Gras, G. and Jaulent, J.-F.: Sur les corps de nombres réguliers,Math. Z. 202 (1989), 343-365. · Zbl 0704.11040 · doi:10.1007/BF01159964
[4] Greenberg, R.: On the Iwasawa invariants of totally real number fields,Amer. J. Math. 98 (1976), 263-284. · Zbl 0334.12013 · doi:10.2307/2373625
[5] Iwasawa, K.: OnZ t-extensions of algebraic number fields,Ann. Math. 98 (1973), 243-326. · Zbl 0285.12008 · doi:10.2307/1970784
[6] Iwasawa, K.: Riemann-Hurwitz formula andp-adic Galois representations for number fields,Tôhoku Math. J. (2) 33 (1981), 263-288. · Zbl 0468.12004 · doi:10.2748/tmj/1178229453
[7] Jaulent, J.-F.: L’arithmétique desl-extensions, Thèse, Univ. de Franche-Comté (1986).
[8] Kahn, B.: Descente galoisienne etK 2 des corps de nombres, prépublication (1992).
[9] Kida, Y.:l-extensions ofCM fields and cyclotomic invariants,J. Number Theory 12 (1980), 519-528. · Zbl 0455.12007 · doi:10.1016/0022-314X(80)90042-6
[10] Kolster, M.: On torsion inK 2 of fields,J. Pure Appl. Algebra 71 (1991), 257-273. · Zbl 0752.19003 · doi:10.1016/0022-4049(91)90116-J
[11] Kolster, M.:K 2 of rings of algebraic integers,J. Number Theory 42, 1 (1992), 103-122. · Zbl 0769.11043 · doi:10.1016/0022-314X(92)90112-3
[12] Kolster, M.: Remarks on étaleK-theory and Leopoldt’s conjecture, preprint, 1992.
[13] Kuz’min, L.-V.: Some duality theorems for cyclotomic ?-extensions over algebraic number fields,Math. USSR Izv. 14 (1980), 441-480. · Zbl 0448.12007 · doi:10.1070/IM1980v014n03ABEH001142
[14] Kuz’min, L.-V.: An analog of the Riemann-Hurwitz formula for one type ofl-extensions of algebraic number fields,Math. USSR Izv. 36 (1991), 325-347. · Zbl 0767.11050 · doi:10.1070/IM1991v036n02ABEH002024
[15] Michel, A.: Ubiquité de la formule de Riemann-Hurwitz, Thèse, Bordeaux, 1992.
[16] Movahhedi, A. and Nguyen Quang Do, T.: Sur l’arithmétique des corps de nombresp-rationnels,Sém. Théorie des Nombres Paris (1987-88), Birkhäuser, Basle, 1990, pp. 155-197.
[17] Nguyen Quang Do, T.: Sur laZ p-torsion de certains modules galoisiens,Ann. Inst. Fourier 36 (1986), 27-46. · Zbl 0576.12010
[18] Nguyen Quang Do, T.: Sur la torsion de certains modules galoisiens II,Sém. Théorie des Nombres Paris (1986-87), Birkhäuser, Basle, 1989, pp. 271-297.
[19] Nguyen Quang Do, T.: Sur la cohomologie de certains modules galoisiensp-ramifiés dansThéorie des Nombres, Laval (1987), W. de Gruyter, 1989, pp. 740-754.
[20] Nguyen Quang Do, T.:p-nullity of the wild (resp. tame) Kernel in terms of Galois groups, Workshop on ?The Arithmetic of the wild Kernel?, Bielefeld (1991), pp. 1-5.
[21] Nguyen Quang Do, T.:K 2 et conjecturep-adique de Gross, prépublication, 1992.
[22] Schneider, P.: Über gewisse Galoiscohomologiegruppen,Math. Z. 168 (1979), 181-205. · Zbl 0421.12024 · doi:10.1007/BF01214195
[23] Tsvetkov, V.-M.: Examples of extensions with Demuskin groups:J. Soviet Math. 24, 4 (1984), 480-482. · Zbl 0529.12007 · doi:10.1007/BF01094385
[24] Washington, L.-C.:Introduction to Cyclotomic Fields, Graduate Texts in Math. 83, Springer-Verlag, New York, 1982.
[25] Wingberg, K.: Duality theorems for ?-extensions of algebraic number fields,Compositio Math. 55 (1985), 333-381. · Zbl 0608.12012
[26] Wingberg, K.: On the maximal unramified extension of an algebraic number field, preprint 1992. · Zbl 0779.11054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.