×

Cyclic cohomology of crossed products by algebraic groups. (English) Zbl 0799.46078

From the author’s Introduction: It is the purpose of this paper to study the cyclic cohomology of crossed products of Lie groups. The main result is the Connes-Kasparov conjecture in cyclic cohomology.
Let \(G\) be a Lie group acting smoothly on a locally convex algebra \(A\) over \(\mathbb C\). Then \(C_ c^ \infty (G,A)\) with convolution product becomes a locally convex algebra denoted by \(A \rtimes G\).
We now indicate our main result:
Let \(G\) be a real algebraic group, \(k\) a maximal compact subgroup of \(G\) and \(C^ \infty_{\text{inv}} (G)\) the ring of smooth \(Ad_ G\)-invariant functions on \(G\). The periodic cyclic homology groups \(PHC_ *(A \rtimes G)\) and \(PHC_ *(A \rtimes k)\) are modules over \(C^ \infty_{\text{inv}} (G)\) such that \[ PHC_ *(A \rtimes G)_ m \simeq PHC_ *(A \rtimes k)_ m \] for any maximal ideal \(m\) of \(C^ \infty_{\text{inv}} (G)\). So in particular \(PHC_ *(A \rtimes G)_ m\) vanishes if \(m\) is not elliptic.

MSC:

46L55 Noncommutative dynamical systems
46L80 \(K\)-theory and operator algebras (including cyclic theory)
46M20 Methods of algebraic topology in functional analysis (cohomology, sheaf and bundle theory, etc.)
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Adams, J.F.: Lectures on Lie groups. Amsterdam New York: Benjamin 1969 · Zbl 0206.31604
[2] Atiyah, M.F.: Global theory of elliptic operators. In: Proceedings of the International Conference in functional analysis and related topics. Tokyo 1969, pp. 21-29. Tokyo: University of Tokyo Press 1970
[3] Baum, P., Connes A.: Geometric K-theory for Lie groups and foliations. Inst. Hantes ?tud. Sci. (Preprint 1982)
[4] Blanc, Ph., Brylinski, J.-L.: Cyclic cohomology and the Selberg principle. Funct. Anal.109, 289-330 (1992) · Zbl 0783.55004 · doi:10.1016/0022-1236(92)90020-J
[5] Borel, A., Linear algebraic groups. Amsterdam New York: Benjamin 1969 · Zbl 0206.49801
[6] Borel, A., Wallach, N.: Continuous cohomology, discrete subgroups and representations of reductive groups (Ann. Math. Stud., vol. 94) Princeton: Princeton University Press 1980 · Zbl 0443.22010
[7] Connes, A.: Cohomology cyclique et foncteursExt n . C.R. Acad. Sci., Paris296, 953-958 (1983) · Zbl 0534.18009
[8] Connes, A.: Non-commutative differential geometry. Publ. Math., Inst. Hautes ?tud. Sci.62, 41-144 (1985) · Zbl 0592.46056 · doi:10.1007/BF02698807
[9] Connes, A.: An analogue of the Thom isomorphism for crossed products of aC *-algebra by an action of ?. Adv. Math.39, 31-55 (1981) · Zbl 0461.46043 · doi:10.1016/0001-8708(81)90056-6
[10] Drinfeld, V.G.: Quantum Groups. In: Gleason, A.M. (ed.) Proc. Int. Cong. Math. Berkeley 1986, pp. 798-820. Providence, RI: Am. Math. Soc. 1987
[11] Elliott, G.A., Natsume, T., Nest, T.: Cyclic cohomology of one parameter smooth crossed products. Acta Math.160, 285-305 (1988) · Zbl 0655.46054 · doi:10.1007/BF02392278
[12] Grothendieck, A.: Produits tensoriels topologiques et espaces nucleaires. Mem. Am. Math. Soc.16, 1-331 (1955)
[13] Guichardet, A.: Cohomologie des groupes topologiques and des algebres de Lie. Paris: Fernard Nathan 1980 · Zbl 0464.22001
[14] Humphreys, J.E.: Introduction to Lie algebras and representation theory. Berlin Heidelberg New York: Springer 1972 · Zbl 0254.17004
[15] Julg, P., Valette, A.: Twisted coboundary operator on a tree and the Selberg principle. J. Oper. Theory16, 285-304 (1986) · Zbl 0613.46058
[16] Julg, P., Valette, A.: L’operateur de cobord tordu sur un arbre et le principle de Selberg. II. J. Oper. Theory17, 347-355 (1987) · Zbl 0639.46063
[17] Kasparov, G.G.: Equivariant KK-theory and the Novikov conjecture. Invent. Math.91, 147-201 (1988) · Zbl 0647.46053 · doi:10.1007/BF01404917
[18] Loday, J.-L., Quillen, D.: Cyclic homology and the Lie algebra homology of matrices. Comment. Math. Helv.58, 565-591 (1984) · Zbl 0565.17006 · doi:10.1007/BF02566367
[19] MacLane, S.: Homology, Berlin Heidelberg New York: Springer 1963
[20] Manin, Y.: Topics in noncommutative geometry. Princeton: Princeton University Press 1991 · Zbl 0724.17007
[21] Natsume, T., Nest, R.: The cyclic cohomology of compact Lie groups and the direct sum formula J. Oper. Theory (to appear) · Zbl 0726.22008
[22] Nest, R.: Cyclic cohomology of crossed products with ?. J. Funct. Anal.80, 235-283 (1988) · Zbl 0658.46054 · doi:10.1016/0022-1236(88)90001-8
[23] Nistor, V.: Group cohomology and the cyclic cohomology of crossed products. Invent. Math.99, 411-424 (1990) · Zbl 0692.46065 · doi:10.1007/BF01234426
[24] Nistor, V.: A bivariant Chern character forp-summable quasihomomorphisms. K-Theory5, 193-211 (1991) · Zbl 0784.19001 · doi:10.1007/BF00533587
[25] Nistor, V.: A bivariant Chern-Connes character. Ann. Math. (to appear) · Zbl 0798.46051
[26] Pimsner, M., KK-groups of crossed products by groups acting on trees. Invent. Math.86, 603-634 (1986) · Zbl 0638.46049 · doi:10.1007/BF01389271
[27] Pimsner, M., Voiculescu, D.: Exact sequences forK-groups andExt-groups for certain crossed products ofC *-algebras J. Oper. Theory6, 93-118 (1980) · Zbl 0474.46059
[28] Pimsner, M., Voiculescu, D.: K-groups of reduced crossed products by free groups. J. Oper. Theory8, 131-156 (1982) · Zbl 0533.46045
[29] Tsygan, B.L.: Homology of matrix Lie algebras over rings and Hochschild homology. Usp. Math. Nauk.38, 217-218 (1983) · Zbl 0518.17002
[30] van Est, W. T.: On algebraic cohomology concepts in Lie Groups I, II. Indagationes Math.17, 225-233, 286-294 (1955) · Zbl 0067.26202
[31] Warner, F.: Harmonic Analysis on semisimple Lie groups. Berlin Heidelberg New York: Springer 1972 · Zbl 0265.22020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.