×

Super efficiency in vector optimization. (English) Zbl 0796.90045

After some comprehensive remarks on cones the authors introduce super efficiency as a new concept of proper efficiency in multicriteria optimization in half ordered real normed linear spaces \(X\): If \(S\) is the ordering cone of \(X\), \(C\) a nonempty subset of \(X\), then \(x\in X\) is called a super efficient point of \(X\) with respect to \(S\), if there is a real number \(M>0\) such that cone \((C-X)\cap (B-S)\subset MB\), where \(B\) is the closed unit ball of \(X\). They carefully compare super efficiency with proper efficiency in the senses of Borwein, Henig, Geoffrion, Hartly and with efficiency at all. For finite dimensions the new concept coincides with proper efficiency.
Furthermore, the authors prove an existence theorem for super efficient points, norm denseness results (in the efficient frontier) and characterizations.
Reviewer: A.Göpfert (Halle)

MSC:

90C29 Multi-objective and goal programming
90C48 Programming in abstract spaces
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Harold P. Benson, An improved definition of proper efficiency for vector maximization with respect to cones, J. Math. Anal. Appl. 71 (1979), no. 1, 232 – 241. · Zbl 0418.90081 · doi:10.1016/0022-247X(79)90226-9
[2] J. Borwein, Proper efficient points for maximizations with respect to cones, SIAM J. Control Optimization 15 (1977), no. 1, 57 – 63. · Zbl 0369.90096 · doi:10.1137/0315004
[3] J. M. Borwein, The geometry of Pareto efficiency over cones, Math. Operationsforsch. Statist. Ser. Optim. 11 (1980), no. 2, 235 – 248 (English, with German and Russian summaries). · Zbl 0447.90077 · doi:10.1080/02331938008842650
[4] J. M. Borwein, Continuity and differentiability properties of convex operators, Proc. London Math. Soc. (3) 44 (1982), no. 3, 420 – 444. · Zbl 0487.46026 · doi:10.1112/plms/s3-44.3.420
[5] Jonathan M. Borwein, On the existence of Pareto efficient points, Math. Oper. Res. 8 (1983), no. 1, 64 – 73. · Zbl 0508.90080 · doi:10.1287/moor.8.1.64
[6] J. M. Borwein, Norm duality for convex processes and applications, J. Optim. Theory Appl. 48 (1986), no. 1, 53 – 64. · Zbl 0557.49009 · doi:10.1007/BF00938589
[7] -, Convex cones, minimality notions and consequences, Recent Advances and Historical Development of Vector Optimization , Springer-Verlag, New York, 1987, pp. 64-73.
[8] J. P. Dauer and W. Stadler, A survey of vector optimization in infinite-dimensional spaces. II, J. Optim. Theory Appl. 51 (1986), no. 2, 205 – 241. · Zbl 0592.90081 · doi:10.1007/BF00939823
[9] J. P. Dauer and O. A. Saleh, A characterization of proper minimal points as solutions of sublinear optimization problems (to appear). · Zbl 0802.49003
[10] Arthur M. Geoffrion, Proper efficiency and the theory of vector maximization, J. Math. Anal. Appl. 22 (1968), 618 – 630. · Zbl 0181.22806 · doi:10.1016/0022-247X(68)90201-1
[11] Roger Hartley, On cone-efficiency, cone-convexity and cone-compactness, SIAM J. Appl. Math. 34 (1978), no. 2, 211 – 222. · Zbl 0379.90005 · doi:10.1137/0134018
[12] M. I. Henig, Proper efficiency with respect to cones, J. Optim. Theory Appl. 36 (1982), no. 3, 387 – 407. · Zbl 0452.90073 · doi:10.1007/BF00934353
[13] Richard B. Holmes, Geometric functional analysis and its applications, Springer-Verlag, New York-Heidelberg, 1975. Graduate Texts in Mathematics, No. 24. · Zbl 0336.46001
[14] L. Hurwicz, Programming in linear spaces, Studies in Linear and Nonlinear Programming, , Stanford Univ. Press, Standford, Calif., 1958, pp. 38-102.
[15] Graham Jameson, Ordered linear spaces, Lecture Notes in Mathematics, Vol. 141, Springer-Verlag, Berlin-New York, 1970. · Zbl 0196.13401
[16] Johannes Jahn, Mathematical vector optimization in partially ordered linear spaces, Methoden und Verfahren der Mathematischen Physik [Methods and Procedures in Mathematical Physics], vol. 31, Verlag Peter D. Lang, Frankfurt am Main, 1986. · Zbl 0578.90048
[17] Johannes Jahn, Scalarization in vector optimization, Math. Programming 29 (1984), no. 2, 203 – 218. · Zbl 0539.90093 · doi:10.1007/BF02592221
[18] Johannes Jahn, A generalization of a theorem of Arrow, Barankin, and Blackwell, SIAM J. Control Optim. 26 (1988), no. 5, 999 – 1005. · Zbl 0652.90093 · doi:10.1137/0326055
[19] V. L. Klee Jr., Separation properties of convex cones, Proc. Amer. Math. Soc. 6 (1955), 313 – 318. · Zbl 0064.35602
[20] H. W. Kuhn and A. W. Tucker, Nonlinear programming, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, University of California Press, Berkeley and Los Angeles, 1951, pp. 481 – 492.
[21] Anthony L. Peressini, Ordered topological vector spaces, Harper & Row, Publishers, New York-London, 1967. · Zbl 0169.14801
[22] D. M. Zhuang, Regularity and minimality properties of set-valued structures in optimization, Ph.D Dissertation, Dalhousie Univ., 1989.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.