×

Robustness of multi-grid applied to anisotropic equations on convex domains and on domains with re-entrant corners. (English) Zbl 0791.65090

We analyse multigrid applied to anisotropic equations within the framework of smoothing and approximation properties developed by W. Hackbusch [Multi-grid methods and applications (1985; Zbl 0595.65106)]. For a model anisotropic equation on a square, we give an up-till-now missing proof of an estimate concerning the approximation property which is essential to show robustness. Furthermore, we show a corresponding estimate for a model anisotropic equation on an \(L\)-shaped domain.
The existing estimates for the smoothing property are not suitable to prove robustness for either 2-cyclic Gauss-Seidel smoothers or for less regular problems such as our second model equation. For both cases, we give sharper estimates. By combination of our results concerning smoothing and approximation properties, robustness of \(W\)-cycle multigrid applied to both our model equations will follow for a number of smoothers.

MSC:

65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65F10 Iterative numerical methods for linear systems
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation

Citations:

Zbl 0595.65106
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Apel, T., Dobrowolski, M. (1992): Anisotropic interpolation with applications to the finite element method, Computing,47, 277-293 · Zbl 0746.65077 · doi:10.1007/BF02320197
[2] Adams, R.A. (1975): Sobolev Spaces, Academic Press, New York · Zbl 0314.46030
[3] Aubin, J.P. (1967): Behaviour of the error of the approximate solutions of boundary-value problems for linear elliptic operators by Galerkin’s and finite-difference methods, Ann. Sc. Norm. Super Pisa.21, 599-637 · Zbl 0276.65052
[4] Aubin, J.P. (1972). Approximation of Elliptic Boundary-Value Problems, Wiley-Interscience, New York · Zbl 0248.65063
[5] Babu?ka, I., Aziz, A.K. (1976): On the angle condition in the finite element method, SIAM J. Numer. Anal.,13(2), 214-226 · Zbl 0324.65046 · doi:10.1137/0713021
[6] Decker, N.H., Mandel, J., Parter, S.V. (1988): On the role of regularity in multigrid methods. In: S.F. McCormick, ed., Multigrid Methods, Proceedings Third Copper Mountain Conference on Multigrid Methods, 1987 Lecture Notes in Pure and Applied Mathematics,110. pp. 143-156. Marcel Dekker, Inc. New York
[7] Hackbusch, W. (1985). Multi-Grid Methods and Applications. Springer, Berlin Heidelberg New York · Zbl 0595.65106
[8] Hackbusch, W. (1986): Theorie und Numerik elliptischer Differentialgleichungen, Teubner, Stuttgart · Zbl 0609.65065
[9] Hemker, P.W. (1984): Multigrid methods for problems with a small parameter in the highest derivative. In: D.F. Griffiths, ed., Numerical Analysis. Proceedings Dundee 1983. Lecture Notes in Mathematics,1066, pp. 106-121, Springer, Berlin Heidelberg New York
[10] Bramble, J.H., Xu, J. (1991): Some estimates for a weightedL 2 projection, Math. Comput.56, 463-476 · Zbl 0722.65057
[11] Mandel, J., McCormick, S., Bank, R. (1987): Variational multigrid theory. In: S.F. McCormick, ed., Multigrid Methods, chapter 5, pp. 131-177. SIAM, Philadelphia, Pennsylvania
[12] Nitsche, J. (1968): Ein Kriterium für die Quasi-Optimalität des Ritzsches Verfahrens, Numer. Math.,11, 346-348 · Zbl 0175.45801 · doi:10.1007/BF02166687
[13] Oertel, K., Stüben, K. (1989): Multigrid with ILU-smoothing: systematic tests and improvements. In: W. Hackbusch, ed., Robust Multi-Grid Methods. Proceedings of the Fourth GAMM-Seminar, Notes on Numerical Fluid Mechanics,23, pp. 188-199, Vieweg, Braunschweig · Zbl 0669.65026
[14] Stevenson, R.P. (1992): Modified ILU as a smoother, Preprint, 745, University of Utrecht, (Submitted to Numerische Mathematik) · Zbl 0816.65012
[15] Stevenson, R.P. (1993): New estimates of the contraction number of V-cycle multi-grid with applications to anisotropic equations. In: W. Hackbusch and G. Wittum eds., Incomplete Decompositions, Proceedings of the Eighth GAMM Seminar. Notes on Numerical Fluid Mechanics,41, pp. 159-167, Vieweg, Braunschweig · Zbl 0788.65109
[16] Schatz, A.H., Wahlbin, L.B. (1978): Maximum norm estimates in the finite element method on plane polygonal domains. Part I, Math. Comput.32, 73-109 · Zbl 0382.65058
[17] Wittum, G. (1989): Linear iterations as smoothers in multigrid methods: theory with applications to incomplete decompositions, IMPACT Comput. Sci. Eng.,1, 180-215 · Zbl 0707.65020 · doi:10.1016/0899-8248(89)90029-3
[18] Wittum, G., (1989): On the Robustness of ILU Smoothing, SIAM J. Sci. Stat. Comput.10(4), 699-717 · Zbl 0677.65096 · doi:10.1137/0910043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.