×

A factorization of the Selberg zeta function attached to a rank 1 space form. (English) Zbl 0789.22024

The purpose of this paper is to compare the Selberg zeta function for a cocompact discrete group acting on a rank 1 symmetric space with the regularized determinant of the resolvent operator. The main difficulty in this programme is the evaluation of a family of integrals which intervene in the calculations and the results. These are of the form \[ \int^ \infty_ 0t^{2n} (\text{sech}^ 2at) (b^ 2+t^ 2) (\log (b^ 2+t^ 2)-c) dt \] and it turns out that they can be evaluated in terms of standard functions, the most exotic of which is the Barnes’ double-gamma function. The rest of the paper is devoted to deducing the consequences for the Selberg zeta-function, including its functional equation.

MSC:

22E40 Discrete subgroups of Lie groups
11F72 Spectral theory; trace formulas (e.g., that of Selberg)
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] L. Alvarez-Gaume’, G. Moore, C. Vafa, Theta functions, modular invariance, and strings,Comm. Math. Physics 106 (1986), 1–40 · Zbl 0605.58049 · doi:10.1007/BF01210925
[2] E. Barnes, The theory of theG-functions,Quarterly J. of Math 31 (1900), 264–314 · JFM 30.0389.02
[3] E. D’Hoker, D. Phong, On determinants of Laplacians on Riemann surfaces,Comm. Math. Physics 104 (1986), 537–545 · Zbl 0599.30073 · doi:10.1007/BF01211063
[4] I. Efrat, Determinants of Laplacians on surfaces of finite volume,Comm. Math. Physics 119 (1988), 443–451 · Zbl 0661.10038 · doi:10.1007/BF01218082
[5] J. Fischer, An approach to the Selberg trace formula via the Selberg zeta function,Lecture Notes in Math. 1253 (1987), Springer-Verlag · Zbl 0618.10029
[6] D. Fried, The zeta function of Ruelle and Selberg I,Ann. École Norm. Sup., 19 (1986), 491–517 · Zbl 0609.58033
[7] D. Fried, Analytic torsion and closed geodesics on hyperbolic manifolds,Inven. Math. 84 (1986), 523–540 · Zbl 0621.53035 · doi:10.1007/BF01388745
[8] A. Fujii, N. Kurokawa, T. Sunada, editors, Zeta Functions in Geometry, Proceedings of the August, 1990 Conference (Tokyo Institute of Tech.); to appear in Advanced Studies in Pure Math. series, Academic Press
[9] R. Gangolli, Zeta functions of Selberg’s type for compact space forms of symmetric spaces of rank one,Ill. J. Math. 21 (1977), 1–42 · Zbl 0354.33013
[10] R. Gangolli, G. Warner, Zeta functions of Selberg’s type for some noncompact quotients of symmetric spaces of rank one,Nagoya Math. J. 78 (1980), 1–44
[11] I. Gradshteyn, I. Ryzhik, Table of integrals, series, and products, corrected and enlarged edition prepared by A. Jeffrey (1965), 6th printing, Academic Press · Zbl 0918.65002
[12] Harish-Chandra, Spherical functions on a semisimple Lie group I, II,Am. J. Math. 80 (1958), 241–310, 553–613 · Zbl 0093.12801 · doi:10.2307/2372786
[13] M. Kielanczyk, Determinant of Laplacians, Ph.D. thesis, M.I.T. 1986
[14] Kinkelin, J. ReineAngew Math. (Crelle)57 (1860), 122–138 · ERAM 057.1509cj · doi:10.1515/crll.1860.57.122
[15] S, Koyama, The Selberg zeta function and Omthe determinant of the Laplacian,Proc. Japan Acad. 65 (1989), 280–283 · Zbl 0701.11031 · doi:10.3792/pjaa.65.280
[16] S. Koyama, Determinant expression of Selberg zeta functions I,Trans. Am. Math. Soc. 324 (1991), 149–168 · Zbl 0726.11036 · doi:10.2307/2001500
[17] S, Koyama, Determinant expression of Selberg zeta functions II, III, (1990) reprints · Zbl 0744.11031
[18] N. Kurokawa, Parabolic components of zeta functions,Proc. Japan Acad. 64 (1988), 21–24 · Zbl 0642.10028
[19] R. Miatello, On the Plancherel measure for linear Lie groups of rank one,Manuscripta Math. 29 (1979), 249–276 · Zbl 0426.43010 · doi:10.1007/BF01303630
[20] S. Minakshisundaram, A. Pleijel, Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds,Canadian J. Math. 1 (1949), 242–256 · Zbl 0041.42701 · doi:10.4153/CJM-1949-021-5
[21] K. Okamoto, On the Plancherel formula for some types of simple Lie groups,Osaka J. Math. 2 (1965), 247–282 · Zbl 0132.36004
[22] A. Polyakov, Quantum geometry of bosonic strings,Physics Letters 103 B (1981), 207–210
[23] P. Sarnak, Determinants of Laplacians,Comm. Math. Physics 110 (1987), 113–120. · Zbl 0618.10023 · doi:10.1007/BF01209019
[24] P. Sarnak, Special valves of Selberg’s zeta function, from Number Theory, Trace Formula and Discrete Groups, 1987 Symposium in Honor of Atle Selberg (Oslo, Norway), 457–465
[25] P. Sarnak, Determinant of Laplacians; heights and finiteness, 1989 preprint. · Zbl 0703.53037
[26] A. Selberg, Harmonic analysis on discontinuous groups in weakly symmetric Riemannian space with applications to Dirichlet series,J. Indian Math. Math. Soc. 20 (1956), 47–87 · Zbl 0072.08201
[27] M-F. Vignéras, L’equation fonctionelle de la fonction zêta de Selberg du group modulaire PSL (2,Z), Société Arithmétique de France,Asterérisque 61 (1979), 235–249
[28] A. Voros, Spectral functions, special functions and the Selberg zeta function,Comm. Math. Physics 110 (1987), 439–465 · Zbl 0631.10025 · doi:10.1007/BF01212422
[29] M. Wakayama, Zeta function of Selberg’s type associated with homogeneous vector bundles,Horoshima Math. 15 (1985), 235–295 · Zbl 0592.22012
[30] E. Whittaker, G. Watson, A Course of Modern Analysis, 4th ed. (1927), Cambridge Univ. Press, London and New York · JFM 53.0180.04
[31] F. Williams, Formula for the class 1 spectrum and the meromorphic continuation of Minakshisundaram-Pleijel series, 1989 preprint now being rewritten
[32] F. Williams, Some zeta functions attached to {\(\Phi\)}/K, a paper presented at the 3rd workshop on Representation Theory of Lie Groups and its Applications (Carlos Paz, Argentina) (1989); to appear in a volume on the proceedings of the workshop Birkhäuser Pub
[33] F. Williams, Lectures on the spectrum ofL 2({\(\Phi\)}), Pitman Research Notes in Math. Series 242 (1991), Longman House Pub
[34] F. Williams, On certain definite integrals which arise in automorphic Lie theory, 1991 manuscript · Zbl 0811.11038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.