×

Multirate ROW methods and latency of electric circuits. (English) Zbl 0787.65045

Large nonlinear systems of ordinary differential equations obtained by the nodal analysis of highly integrated electric circuits are investigated. Multirate Rosenbrock-Wanner schemes with micro and macro- steps on a fixed discretization level corresponding to the active or passive components of the electric circuits are proposed. Consistency conditions and the convergence for a method of order \(p\) are established. As a test example an inverter chain is considered.

MSC:

65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L05 Numerical methods for initial value problems involving ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bulirsch, R.; Gilg, A., Effiziente numerische Verfahren für die Simulation elektischer Schaltungen, (Schwärtzel, H., Informatik in der Praxis (1986), Springer: Springer Berlin), 3-12
[2] Denk, G.; Rentrop, P., Mathematical models in electric circuit simulation and their numerical treatment, (Strehmel, K., NUMDIFF5 (1991), Teubner: Teubner Leipzig), 305-316 · Zbl 0733.65048
[3] Feldmann, U.; Wever, U. A.; Zheng, Q.; Schultz, R.; Wriedt, H., Algorithms for modern circuit simulation, Arch. Elektron. Übertragungstech., 46, 274-285 (1992)
[4] Gear, C. W.; Wells, R. R., Multirate linear multistep methods, BIT, 24, 484-502 (1984) · Zbl 0555.65046
[5] Hairer, E., Order conditions for numerical methods for partitioned ordinary differential equations, Numer. Math., 36, 431-445 (1981) · Zbl 0462.65049
[6] Hairer, E.; Nørsett, S. P.; Wanner, G., Solving Ordinary Differential Equations I: Nonstiff Problems (1987), Springer: Springer Berlin · Zbl 0638.65058
[7] Harier, E.; Wanner, G., Solving Ordinary Differential Equations II: Stiff Problems (1991), Springer: Springer Berlin
[8] Kampowsky, W.; Rentrop, P.; Schmidt, W., Classification and numerical simulation of electric circuits, Surveys Math. Indust., 2, 23-65 (1992) · Zbl 0761.65059
[9] Kaps, P.; Rentrop, P., Generalized Runge-Kutta methods of order four with stepsize control for stiff ordinary differential equations, Numer. Math., 33, 55-68 (1979) · Zbl 0436.65047
[10] Kaps, P.; Wanner, G., Rosenbrock-type methods of high order, Numer. Math., 38, 279-298 (1981) · Zbl 0469.65047
[11] Rentrop, P., Partitioned Runge-Kutta methods with stiffness detection and stepsize control, Numer. Math., 47, 545-564 (1985) · Zbl 0625.65059
[12] Schultz, R., Local timestep control for simulating electrical circuits, (Bank, R., Mathematical Modelling and Simulation of Electrical Circuits and Semiconductor Devices. Mathematical Modelling and Simulation of Electrical Circuits and Semiconductor Devices, International Series of Numerical Mathematics, 93 (1990), Birkhäuser: Birkhäuser Boston, MA), 73-84
[13] Shichman, H.; Hodges, D. A., Insulated-gate field-effect transistor switching circuits, IEEE J. Solid State Circuits, 3, 285-289 (1968)
[14] Skelboe, S., Stability properties of backward differentiation multirate formulas, Appl. Numer. Math., 5, 151-160 (1989) · Zbl 0675.65089
[15] Skelboe, S.; Anderson, P. U., Stability properties of backward Euler multirate formulas, SIAM J. Sci. Statist. Comput., 10, 1000-1009 (1989) · Zbl 0685.65081
[16] Strehmel, K.; Weiner, R., Linear-Implizite Runge-Kutta-Methoden und Ihre Anwendungen (1992), Teubner: Teubner Leipzig · Zbl 0759.65047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.