×

On mappings with integrable dilatation. (English) Zbl 0784.30015

Motivated by recent results on nonlinear elasticity theory the authors show that, under appropriate conditions, a map \(f\in W^{1,2}(G,G')\), where \(G\), \(G'\subset R^ 2\) are bounded domains, admits a Stoilov type factorization and thus, in particular, \(f\) is discrete and open. The crucial conditions are: \(J(x,f)\geq 0\) a.e. and \(K(x)=| Df(x)|^ 2/J(x,f)< \infty\) a.e. The particular case where \(K(x)\leq K\) a.e. in \(G\) is a well-known property of quasiregular maps.

MSC:

30C62 Quasiconformal mappings in the complex plane
35J30 Higher-order elliptic equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lars V. Ahlfors, Lectures on quasiconformal mappings, Manuscript prepared with the assistance of Clifford J. Earle, Jr. Van Nostrand Mathematical Studies, No. 10, D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London, 1966. · Zbl 0138.06002
[2] J. M. Ball, Global invertibility of Sobolev functions and the interpenetration of matter, Proc. Roy. Soc. Edinburgh Sect. A 88 (1981), no. 3-4, 315 – 328. · Zbl 0478.46032 · doi:10.1017/S030821050002014X
[3] B. V. Boyarskiĭ, Homeomorphic solutions of Beltrami systems, Dokl. Akad. Nauk SSSR (N.S.) 102 (1955), 661 – 664 (Russian).
[4] B. V. Boyarskiĭ, Generalized solutions of a system of differential equations of first order and of elliptic type with discontinuous coefficients, Mat. Sb. N.S. 43(85) (1957), 451 – 503 (Russian).
[5] B. Bojarski and T. Iwaniec, Analytical foundations of the theory of quasiconformal mappings in \?\(^{n}\), Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (1983), no. 2, 257 – 324. · Zbl 0548.30016 · doi:10.5186/aasfm.1983.0806
[6] Guy David, Solutions de l’équation de Beltrami avec |\?|_{\infty }=1, Ann. Acad. Sci. Fenn. Ser. A I Math. 13 (1988), no. 1, 25 – 70 (French). · Zbl 0619.30024 · doi:10.5186/aasfm.1988.1303
[7] Olli Lehto, Homeomorphic solutions of a Beltrami differential equation, Festband 70. Geburtstag R. Nevanlinna, Springer, Berlin, 1966, pp. 58 – 65.
[8] O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas; Die Grundlehren der mathematischen Wissenschaften, Band 126. · Zbl 0267.30016
[9] J. Manfredi, Monotone Sobolev functions, preprint, University of Pittsburgh. · Zbl 0896.31002
[10] A. I. Markushevich, Theory of functions of a complex variable. Vol. III, Revised English edition, translated and edited by Richard A. Silverman, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. · Zbl 0148.05201
[11] L. F. McAuley, Monotone mappings and open mappings, Proc. of the conference in 1970, State University of New York at Binghamton.
[12] I. N. Pesin, Mappings which are quasiconformal in the mean, Dokl. Akad. Nauk SSSR 187 (1969), 740 – 742 (Russian).
[13] Yu. G. Reshetnyak, Space mappings with bounded distortion, Translations of Mathematical Monographs, vol. 73, American Mathematical Society, Providence, RI, 1989. Translated from the Russian by H. H. McFaden. · Zbl 0667.30018
[14] Seppo Rickman, Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 26, Springer-Verlag, Berlin, 1993. · Zbl 0816.30017
[15] Vladimír Šverák, Regularity properties of deformations with finite energy, Arch. Rational Mech. Anal. 100 (1988), no. 2, 105 – 127. · Zbl 0659.73038 · doi:10.1007/BF00282200
[16] S. K. Vodopyanov and V. M. Goldstein, Quasiconformal mappings and spaces of functions with generalized first derivatives, Siberian Math J. 17 (1977), 515-531.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.