×

The Fibonacci unimodal map. (English) Zbl 0778.58040

This paper studies topological, geometrical and measure-theoretical properties of the real Fibonacci map to figure out if this type of recurrence really gives any pathological examples and to compare it with the infinitely renormalizable patterns of recurrence studied by Sullivan (1990). It turns out that the situation can be understood completely and is of quite regular nature. In particular, any Fibonacci map (with negative Schwarzian and nondegenerate critical point) has an absolutely continuous invariant measure. It turns out also that geometrical properties of the closure of the critical point are quite different from those of the Feigenbaum map; its Hausdorff dimension is equal to zero and its geometry is not rigid but depends on one parameter.
Reviewer: Y.Kozai (Tokyo)

MSC:

37A99 Ergodic theory
37E99 Low-dimensional dynamical systems
37F99 Dynamical systems over complex numbers
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bodil Branner and Adrien Douady, Surgery on complex polynomials, Holomorphic dynamics (Mexico, 1986) Lecture Notes in Math., vol. 1345, Springer, Berlin, 1988, pp. 11 – 72. · Zbl 0668.58026 · doi:10.1007/BFb0081395
[2] B. Branner and J. H. Hubbard, The iteration of cubic polynomials, Part II: patterns and parapatterns, Acta Math. (to appear). · Zbl 0812.30008
[3] A. M. Blokh and M. Yu. Lyubich, Nonexistence of wandering intervals and structure of topological attractors of one-dimensional dynamical systems. II. The smooth case, Ergodic Theory Dynam. Systems 9 (1989), no. 4, 751 – 758. · Zbl 0665.58024 · doi:10.1017/S0143385700005319
[4] A. M. Blokh and M. Yu. Lyubich, Measurable dynamics of \?-unimodal maps of the interval, Ann. Sci. École Norm. Sup. (4) 24 (1991), no. 5, 545 – 573. · Zbl 0790.58024
[5] A. M. Blokh and M. Yu. Lyubich, Measure and dimension of solenoidal attractors of one-dimensional dynamical systems, Comm. Math. Phys. 127 (1990), no. 3, 573 – 583. · Zbl 0721.58033
[6] Adrien Douady and John Hamal Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 2, 287 – 343. · Zbl 0587.30028
[7] John Guckenheimer, Sensitive dependence to initial conditions for one-dimensional maps, Comm. Math. Phys. 70 (1979), no. 2, 133 – 160. · Zbl 0429.58012
[8] John Guckenheimer, Limit sets of \?-unimodal maps with zero entropy, Comm. Math. Phys. 110 (1987), no. 4, 655 – 659. · Zbl 0625.58027
[9] J. H. Hubbard, according to J.-C. Yoccoz, Puzzles and quadratic tableaux, preprint, 1990.
[10] Franz Hofbauer and Gerhard Keller, Some remarks on recent results about \?-unimodal maps, Ann. Inst. H. Poincaré Phys. Théor. 53 (1990), no. 4, 413 – 425. Hyperbolic behaviour of dynamical systems (Paris, 1990). · Zbl 0721.58018
[11] M. Yu. Lyubich, Nonexistence of wandering intervals and structure of topological attractors of one-dimensional dynamical systems. I. The case of negative Schwarzian derivative, Ergodic Theory Dynam. Systems 9 (1989), no. 4, 737 – 749. · Zbl 0665.58023 · doi:10.1017/S0143385700005307
[12] -, On the Lebesgue measure of the Julia set of a quadratic polynomial, preprint, IMS, 1991/10.
[13] Jukka A. Ketoja and Olli-Pekka Piirilä, Fibonacci bifurcation sequences and the Cvitanović-Feigenbaum functional equation, Phys. Lett. A 138 (1989), no. 9, 488 – 492. · doi:10.1016/0375-9601(89)90751-2
[14] John Milnor, On the concept of attractor, Comm. Math. Phys. 99 (1985), no. 2, 177 – 195. John Milnor, Correction and remarks: ”On the concept of attractor”, Comm. Math. Phys. 102 (1985), no. 3, 517 – 519. · Zbl 0595.58028
[15] John Milnor and William Thurston, On iterated maps of the interval, Dynamical systems (College Park, MD, 1986 – 87) Lecture Notes in Math., vol. 1342, Springer, Berlin, 1988, pp. 465 – 563. · Zbl 0664.58015 · doi:10.1007/BFb0082847
[16] M. Martens, Cantor attractors of unimodal maps, Thesis, 1990.
[17] W. de Melo and S. van Strien, A structure theorem in one-dimensional dynamics, Ann. of Math. (2) 129 (1989), no. 3, 519 – 546. · Zbl 0737.58020 · doi:10.2307/1971516
[18] Tomasz Nowicki and Sebastian van Strien, Invariant measures exist under a summability condition for unimodal maps, Invent. Math. 105 (1991), no. 1, 123 – 136. · Zbl 0736.58030 · doi:10.1007/BF01232258
[19] Itamar Procaccia, Stefan Thomae, and Charles Tresser, First-return maps as a unified renormalization scheme for dynamical systems, Phys. Rev. A (3) 35 (1987), no. 4, 1884 – 1900. · doi:10.1103/PhysRevA.35.1884
[20] Dennis Sullivan, Bounds, quadratic differentials, and renormalization conjectures, American Mathematical Society centennial publications, Vol. II (Providence, RI, 1988) Amer. Math. Soc., Providence, RI, 1992, pp. 417 – 466. · Zbl 0936.37016
[21] Kenshin Shibayama, Fibonacci sequence of stable periodic orbits for one-parameter families of \?\textonesuperior -unimodal mappings, The theory of dynamical systems and its applications to nonlinear problems (Kyoto, 1984) World Sci. Publishing, Singapore, 1984, pp. 124 – 139.
[22] Grzegorz Świątek, Rational rotation numbers for maps of the circle, Comm. Math. Phys. 119 (1988), no. 1, 109 – 128. · Zbl 0656.58017
[23] -, Bounded distortion properties of one-dimensional maps, preprint, SUNY, Stony Brook, 1990/10.
[24] Ichiro Tsuda, On the abnormality of period doubling bifurcations: in connection with the bifurcation structure in the Belousov-Zhabotinsky reaction system, Progr. Theoret. Phys. 66 (1981), no. 6, 1985 – 2002. · Zbl 1059.37511 · doi:10.1143/PTP.66.1985
[25] J. J. P. Veerman and F. M. Tangerman, Scalings in circle maps. I, Comm. Math. Phys. 134 (1990), no. 1, 89 – 107. · Zbl 0723.58026
[26] A. M. Vershik and A. M. Livshitz, Adic models of ergodic transformations, preprint, University of California, Berkeley, PAM-499 (1990).
[27] Jean-Christophe Yoccoz, Il n’y a pas de contre-exemple de Denjoy analytique, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), no. 7, 141 – 144 (French, with English summary). · Zbl 0573.58023
[28] -, Manuscript, 1990.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.