×

Krylov-subspace methods for the Sylvester equation. (English) Zbl 0777.65028

Les auteurs décrivent des méthodes itératives de résolution de l’équation de Sylvester \(AX-XB=C\) où \(A\), \(B\), \(C\) sont des matrices carrées données. Ces méthodes réduisent cette équation en une équations de Sylvester de plus petite taille par le procédé d’Arnoldi. Les auteurs explicitent les algorithmes de résolution et donnent de nombreux exemples concrets.

MSC:

65F30 Other matrix algorithms (MSC2010)
65Y05 Parallel numerical computation
15A24 Matrix equations and identities

Software:

Algorithm 432
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Z. Bai, D. Hu, and L. Reichel, Implementation of GMRESQRProceedings of the Fifth SIAM Conference on Parallel Processing for Scientific Computing; Z. Bai, D. Hu, and L. Reichel, Implementation of GMRESQRProceedings of the Fifth SIAM Conference on Parallel Processing for Scientific Computing · Zbl 0818.65023
[2] Z. Bai, D. Hu, and L. Reichel, A Newton basis GMRESIMA J. Numer. Anal.; Z. Bai, D. Hu, and L. Reichel, A Newton basis GMRESIMA J. Numer. Anal. · Zbl 0818.65022
[3] Bartels, R.; Stewart, G. W., Algorithm 432: Solution of the matrix equation \(AX + XB = C\), Comm. ACM, 15, 820-826 (1972) · Zbl 1372.65121
[4] Birkhoff, G.; Varga, R. S.; Young, D., Alternating direction implicit methods, (Advances in Computing, Vol. 3 (1962), Academic: Academic New York), 189-273 · Zbl 0111.31402
[5] Brown, P., A theoretical comparison of the Arnoldi and GMRES algorithms, SIAM J. Sci. Statist. Comput., 12, 58-78 (1991) · Zbl 0719.65022
[6] Datta, B. N.; Datta, K., Theoretical and computational aspects of some linear algebra problems in control theory, (Byrnes, C. I.; Lindquist, A., Computational and Combinatorial Methods in Systems Theory (1986), Elsevier: Elsevier Amsterdam), 201-212
[7] Ellner, N. S.; Wachspress, E. L., Alternating direction implicit iteration for systems with complex spectra, SIAM J. Numer. Anal, 28, 859-870 (1991) · Zbl 0737.65027
[8] Elman, H. C.; Saad, Y.; Saylor, P. E., A hybrid Chebyshev Krylov subspace algorithm for solving nonsymmetric systems of linear equations, SIAM J. Sci. Statist. Comput., 7, 840-855 (1986) · Zbl 0613.65031
[9] Ferng, W. R.; Golub, G. H.; Plemmons, R. J., Adaptive Lanczos methods for recursive condition estimation, Numer. Algorithms, 1, 1-20 (1991) · Zbl 0794.65043
[10] Gantmacher, F. R., Matrizentheorie (1986), Springer-Verlag: Springer-Verlag New York
[11] Golub, G. H.; Nash, S.; Van Loan, C., A Hessenberg-Schur method for the problem \(AX + XB = C\), IEEE Trans. Automat. Control, AC-24, 909-913 (1979) · Zbl 0421.65022
[12] Golub, G. H.; Van Loan, C. F., Matrix Computations (1989), Johns Hoplins U.P: Johns Hoplins U.P Baltimore · Zbl 0733.65016
[13] Hearon, J. Z., Nonsingular solutions of \(TA - BT = C\), Linear Algebra Appl., 16, 57-63 (1977) · Zbl 0368.15007
[14] Karlsson, R., A Study of Some Roundoff Effects of the GMRES Method, Report LiTH-MAT-R-1990-11 (1991), Dept. of Mathematics, Linköping Univ: Dept. of Mathematics, Linköping Univ Linköping, Sweden
[15] N. Nachtigal, L. Reichel, and L.N. Trefethen, A hybrid GMRESSIAM J. Matrix Anal. Appl.; N. Nachtigal, L. Reichel, and L.N. Trefethen, A hybrid GMRESSIAM J. Matrix Anal. Appl. · Zbl 0757.65035
[16] Saad, Y., Krylov subspace methods for solving large unsymmetric linear systems, Math. Comp., 37, 105-126 (1981) · Zbl 0474.65019
[17] Saad, Y., Projection methods for solving large sparse eigenvalue problems, (K∘agström, B.; Ruhe, A., Matrix Pencils (1983), Springer-Verlag: Springer-Verlag Berlin), 121-144, Lecture Notes in Math. 973
[18] Saad, Y., Krylov subspace methods on supercomputers, SIAM J. Sci. Statist. Comput., 10, 1200-1232 (1989) · Zbl 0693.65028
[19] Saad, Y., Numerical solution of large Lyapunov equations, (Kaashoek, M. A.; van Schuppen, J. H.; Ran, A. C.M., Signal Processing, Scattering, Operator Theory and Numerical Methods (1990), Birkhäuser: Birkhäuser Boston), 503-511
[20] Saad, Y.; Schultz, M. H., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comp., 7, 856-869 (1986) · Zbl 0599.65018
[21] de Souza, E.; Bhattacharyya, S. P., Controllability, observability and the solution of \(AX - XB = C\), Linear Algebra Appl., 39, 167-188 (1981) · Zbl 0468.15012
[22] Starke, G., Rationale Minimierungsprobleme in der Komplexen Ebene im Zusammenhang mit der Bestimmung Optimaler ADI-Parameter, Ph.D. Thesis (1989), Inst. für Praktische Mathematik, Univ. Karlsruhe: Inst. für Praktische Mathematik, Univ. Karlsruhe Germany · Zbl 0696.65030
[23] Starke, G.; Niethammer, W., SOR for \(AX - XB = C\), (Linear Algebra Appl., 154-156 (1991)), 355-375 · Zbl 0736.65031
[24] G. Starke and R.S. Varga, A hybrid Arnoldi-Faber iterative method for nonsymmetric systems of linear equations, Numer. Math.; G. Starke and R.S. Varga, A hybrid Arnoldi-Faber iterative method for nonsymmetric systems of linear equations, Numer. Math. · Zbl 0795.65015
[25] Varga, R. S., Matrix Iterative Analysis (1962), Prentice-Hall: Prentice-Hall Englewood Cliffs, N.J · Zbl 0133.08602
[26] Wachspress, E. L., Iterative solution of the Lyapunov matrix equation, Appl. Math. Lett., 1, 87-90 (1988) · Zbl 0631.65037
[27] Wachspress, E. L., The ADI minimax problem for complex spectra, (Kincaid, D. R.; Hayes, L. J., Iterative Methods for Large Linear Systems (1990), Academic: Academic San Diego), 251-271
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.