×

Hilbert space for charged particles in perpendicular magnetic fields. (English) Zbl 0767.58046

Summary: We describe the quantum mechanics of two-dimensional charged particles in a perpendicular magnetic field in the planar Landau and spherical monopole configurations. These models, particularly in the work of Laughlin and Haldane, are crucial to the theoretical understanding of the quantum Hall effect. Here we present the full Hilbert space structure in each case, with special emphasis on the relationship between the two systems. The formulation in terms of stereographically projected complex coordinates makes the connection especially explicit and naturally generalizes to more complicated two-dimensional surfaces where the interaction of the particles with an external perpendicular magnetic field may be regarded as an interaction of the particles with the two- dimensional (Kähler) metric of the surface. This generalization is illustrated by the hyperbolic configuration of particles constrained to the upper sheet of a hyperboloid in the presence of a hyperbolic monopole.

MSC:

58Z05 Applications of global analysis to the sciences
81V10 Electromagnetic interaction; quantum electrodynamics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Girvin, S.; Prange, R., (The Quantum Hall Effect (1990), Springer-Verlag: Springer-Verlag New York), and references therein
[2] Laughlin, R., Phys. Rev. B, 29, 3383 (1983)
[3] Haldane, F. D.M., Phys. Rev. Lett., 51, 605 (1983)
[4] Dirac, P., (Proc. R. Soc. London A, 133 (1931)), 60
[5] Tamm, I., Z. Phys., 71, 141 (1931)
[6] Fierz, M., Helv. Phys. Acta, 17, 27 (1944)
[7] Wu, T. T.; Yang, C. N., Nucl. Phys. B, 107, 365 (1976)
[8] Haldane, F. D.M.; Rezayi, E. M., Phys. Rev. Lett., 54, 237 (1985)
[9] Landau, L.; Lifschitz, E., (Quantum Mechanics: Non-Relativistic Theory (1977), Pergamon: Pergamon New York)
[10] Girvin, S.; Jach, T., Phys. Rev. B, 29, 5617 (1984)
[11] Fano, G.; Ortolani, F.; Colombo, E., Phys. Rev. B, 34, 2670 (1986)
[12] Bargmann, V., Rev. Mod. Phys., 34, 829 (1962)
[13] Laughlin, R., Surf. Sci., 141, 11 (1984)
[14] Abramowitz, M.; Stegun, I., (Handbook of Mathematical Functions (1984), Verlag Harri Deutsch: Verlag Harri Deutsch Thun, Switzerland)
[15] Szegö, G., (Orthogonal Polynomials (1967), Amer. Math. Soc: Amer. Math. Soc Providence, RI) · JFM 61.0386.03
[16] Vilenkin, N., (Special Functions and the Theory of Group Representations (1968), Amer. Math. Soc: Amer. Math. Soc Providence, RI) · Zbl 0172.18404
[17] Dunne, G.; Jackiw, R.; Trugenberger, C., Phys. Rev. D, 41, 661 (1990), Such parametric limits in magnetic systems have been studied previously in
[18] Dunne, G.; Lerda, A.; Sciuto, S.; Trugenberger, C., Nucl. Phys. B (June 1991), to appear in
[19] Perelomov, A., (Generalized Coherent States and their Applications (1986), Springer-Verlag: Springer-Verlag New York) · Zbl 0605.22013
[20] Schwinger, J., Phys. Rev., 91, 728 (1953)
[21] S.Iso; S.Iso
[22] (Erdèlyi, A., Higher Transcendental Functions, Vol. II (1953), McGraw-Hill: McGraw-Hill New York), Bateman Manuscript Project · Zbl 0051.30303
[23] Gilmore, R., (Lie Groups, Lie Algebras, and Some of Their Applications (1974), Wiley: Wiley New York) · Zbl 0279.22001
[24] Edmonds, A., (Angular Momentum in Quantum Mechanics (1974), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ) · Zbl 0860.00016
[25] Bargmann, V., Ann. Math., 48, 568 (1947)
[26] Comtet, A., Ann. Phys. (N.Y.), 173, 185 (1987)
[27] Grosche, C., Ann. Phys. (N.Y.), 187, 110 (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.