×

Complex tangents of real surfaces in complex surfaces. (English) Zbl 0761.53032

Let \(M\) be a closed real surface, and let \({\mathcal M}\) be a complex manifold of complex dimension two. Let \(\pi:M\to{\mathcal M}\) be an immersion or embedding of \(M\) into \({\mathcal M}\). A point \(p\in M\) is a complex tangent if \(\pi_ *(T_ pM)\) is a complex 1-dimensional subspace of \(T_{\pi(p)}{\mathcal M}\). Generically, complex tangents are isolated points of \(M\). The author studies the extent to which the structure of the set of complex tangents can be simplified through a regular homotopy of immersions or an isotopy of embeddings.
Reviewer: J.Hebda (St.Louis)

MSC:

53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
32Q99 Complex manifolds
53C56 Other complex differential geometry
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. Abraham, Transversality in manifolds of mappings , Bull. Amer. Math. Soc. 69 (1963), 470-474. · Zbl 0171.44501 · doi:10.1090/S0002-9904-1963-10969-6
[2] R. Abraham and J. Robbin, Transversal mappings and flows , An appendix by Al Kelley, W. A. Benjamin, Inc., New York-Amsterdam, 1967. · Zbl 0171.44404
[3] L. V. Ahlfors and L. Sario, Riemann surfaces , Princeton Mathematical Series, No. 26, Princeton University Press, Princeton, N.J., 1960. · Zbl 0196.33801
[4] A. Andreotti and T. Frankel, The Lefschetz theorem on hyperplane sections , Ann. of Math. (2) 69 (1959), 713-717. JSTOR: · Zbl 0115.38405 · doi:10.2307/1970034
[5] V. I. Arnold, On a characteristic class entering into conditions of quantization , Funkcional. Anal. i Priložen. 1 (1967), 1-14, in Russian. · Zbl 0175.20303
[6] M. Audin, Fibrés normaux d’immersions en dimension double, points doubles d’immersions lagragiennes et plongements totalement réels , Comment. Math. Helv. 63 (1988), no. 4, 593-623. · Zbl 0666.57024 · doi:10.1007/BF02566781
[7] E. Bedford and B. Gaveau, Envelopes of holomorphy of certain \(2\)-spheres in \({\mathbf C}^{2}\) , Amer. J. Math. 105 (1983), no. 4, 975-1009. JSTOR: · Zbl 0535.32008 · doi:10.2307/2374301
[8] E. Bedford and W. Klingenberg, On the envelope of holomorphy of a \(2\)-sphere in \(\mathbf{C}^{2}\) , preprint, 1989. JSTOR: · Zbl 0736.32009 · doi:10.2307/2939272
[9] E. Bishop, Differentiable manifolds in complex Euclidean space , Duke Math. J. 32 (1965), 1-21. · Zbl 0154.08501 · doi:10.1215/S0012-7094-65-03201-1
[10] S.-S. Chern and E. Spanier, A theorem on orientable surfaces in four-dimensional space , Comment. Math. Helv. 25 (1951), 205-209. · Zbl 0043.38403 · doi:10.1007/BF02566455
[11] T. Duchamp and F. Forstnerič, Intersections of totally real and holomorphic disks , preprint, 1991. · Zbl 0808.32022 · doi:10.5565/PUBLMAT_37193_09
[12] Ya. Eliashberg, Filling by holomorphic discs and its applications , preprint, 1990.
[13] T. Fiedler, Totally real embeddings of the torus into \({\mathbf C}^ 2\) , Ann. Global Anal. Geom. 5 (1987), no. 2, 117-121. · Zbl 0656.14015 · doi:10.1007/BF00127854
[14] F. Forstenerič, Proper Holomorphic Mappings in Several Complex Variables , thesis, Univ. of Washington, Seattle, 1985.
[15] F. Forstnerič, On totally real embeddings into \({\mathbf C}^ n\) , Exposition. Math. 4 (1986), no. 3, 243-255. · Zbl 0597.57018
[16] F. Forstnerič, Analytic disks with boundaries in a maximal real submanifold of \({\mathbf C}^ 2\) , Ann. Inst. Fourier (Grenoble) 37 (1987), no. 1, 1-44. · Zbl 0583.32038 · doi:10.5802/aif.1076
[17] F. Forstnerič, A totally real three-sphere in \({\mathbf C}^ 3\) bounding a family of analytic disks , Proc. Amer. Math. Soc. 108 (1990), no. 4, 887-892. · Zbl 0688.32016 · doi:10.2307/2047942
[18] F. Forstnerič and E. L. Stout, A new class of polynomially convex sets , Ark. Mat. 29 (1991), no. 1, 51-62. · Zbl 0734.32006 · doi:10.1007/BF02384330
[19] A. B. Givental, Lagrangian imbeddings of surfaces and the open Whitney umbrella , Funktsional. Anal. i Prilozhen. 20 (1986), no. 3, 35-41, 96. · Zbl 0621.58025 · doi:10.1007/BF01078471
[20] P. Griffiths and J. Harris, Principles of algebraic geometry , Wiley-Interscience [John Wiley & Sons], New York, 1978. · Zbl 0408.14001
[21] M. L. Gromov, Convex integration of differential relations. I , Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), 329-343, in English, Math. USSR-Izv., 7, (1973), 329-344. · Zbl 0254.58001 · doi:10.1070/IM1973v007n02ABEH001940
[22] M. Gromov, Pseudoholomorphic curves in symplectic manifolds , Invent. Math. 82 (1985), no. 2, 307-347. · Zbl 0592.53025 · doi:10.1007/BF01388806
[23] M. Gromov, Partial differential relations , Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 9, Springer-Verlag, Berlin, 1986. · Zbl 0651.53001
[24] V. M. Harlamov and Ya. Eliashberg, On the number of complex points of a real surface in a complex surface , Topology: Proceedings of the International Topological Conference Held in Leningrad, 1982, Lecture Notes in Math., vol. 1060, Springer-Verlag, Berlin, 1983, pp. 143-148. · Zbl 0609.32016
[25] F. R. Harvey and R. O. Wells, Jr., Holomorphic approximation and hyperfunction theory on a \(C^{1}\) totally real submanifold of a complex manifold , Math. Ann. 197 (1972), 287-318. · Zbl 0246.32019 · doi:10.1007/BF01428202
[26] L. Hörmander, An introduction to complex analysis in several variables , North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. · Zbl 0685.32001
[27] C. E. Kenig and S. M. Webster, The local hull of holomorphy of a surface in the space of two complex variables , Invent. Math. 67 (1982), no. 1, 1-21. · Zbl 0489.32007 · doi:10.1007/BF01393370
[28] J. A. Lees, On the classification of Lagrange immersions , Duke Math. J. 43 (1976), no. 2, 217-224. · Zbl 0329.58006 · doi:10.1215/S0012-7094-76-04319-2
[29] W. S. Massey, Proof of a conjecture of Whitney , Pacific J. Math. 31 (1969), 143-156. · Zbl 0198.56701 · doi:10.2140/pjm.1969.31.143
[30] J. W. Milnor and James D. Stasheff, Characteristic classes , Princeton University Press, Princeton, N. J., 1974. · Zbl 0298.57008
[31] W. Rudin, Totally real Klein bottles in \({\mathbf C}^{2}\) , Proc. Amer. Math. Soc. 82 (1981), no. 4, 653-654. · Zbl 0483.32013 · doi:10.2307/2043790
[32] A. H. Wallace, Differential topology: first steps , W. A. Benjamin, Inc., Reading, Mass.-London-Amsterdam, 1968. · Zbl 0164.23805
[33] S. M. Webster, Minimal surfaces in a Kähler surface , J. Differential Geom. 20 (1984), no. 2, 463-470. · Zbl 0561.53054
[34] A. Weinstein, Lectures on Symplectic Manifolds , Reg. Conf. Ser. Math., no. 29, American Mathematical Society, Providence, R.I., 1977. · Zbl 0406.53031
[35] R. O. Wells, Jr., Compact real submanifolds of a complex manifold with nondegenerate holomorphic tangent bundles , Math. Ann. 179 (1969), 123-129. · Zbl 0167.21604 · doi:10.1007/BF01350124
[36] H. Whitney, The self-intersections of a smooth \(n\)-manifold in \(2n\)-space , Ann. of Math. (2) 45 (1944), 220-246. JSTOR: · Zbl 0063.08237 · doi:10.2307/1969265
[37] F. Forstnerič, Intersections of analytic and smooth discs , preprint, 1991.
[38] F. W. Kamber and P. Tondeur, Characteristic invariants of foliated bundles , Manuscripta Math. 11 (1974), 51-89. · Zbl 0267.57012 · doi:10.1007/BF01189091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.