×

Strong regularity and generalized inverses in Jordan systems. (English) Zbl 0759.17019

An associative ring \(A\) is called strongly regular if \(a\in Aa^ 2\) for any \(a\in A\). As shown by M. Benslimane A. Fernandez-Lopez, E. Garceia Rus and El A. M. Kaidi [Algebras Groups Geom. 6, No. 4, 353-360 (1989; Zbl 0742.17001)], strong regularity is a symmetric concept, because \(A\) is strongly regular if and only if \(a\in a^ 2Aa^ 2\) for any \(a\in A\). Therefore, this condition can be expressed in terms of the symmetrized Jordan algebra \(A^ +\) and extended to Jordan systems. A Jordan algebra, or triple system, \(J\) is called strongly regular if \(a\in P(a)^ 2J\) for any \(a\in A\), where \(P(a)\) is the usual quadratic operator.
In the paper under review, once the above remarks are carefully settled, the concept of strong regularity is investigated in the more general setting of a Jordan semigroup (a nonempty set \(J\) with a map \(x\mapsto P(x)\), \(P(x):J\to J\), such that \(P(P(x)y)=P(x)P(y)P(x)\). An element \(a\) in the Jordan semigroup \(J\) is shown to be strongly regular \((a\in P(a)^ 2J)\) if and only if there is an element \(b\in J\), called the generalized inverse of \(a\), such that \(a=P(a)b\), \(b=P(b)a\) and \([P(a),P(b)]=0\). Then, strongly regular elements are characterized and studied in Jordan triple systems. A Jordan triple system is proved to be strongly regular if and only if it is von Neumann regular and has no nonzero nilpotent elements. The notion of generalized inverse is also shown to be closely related to the notion of the Moore-Penrose inverse in associative triple system and the group inverse in semigroups.
Finally, other related notions in associative algebras, such as abelian regularity and Drazin inverses are naturally extended and investigated in Jordan systems.

MSC:

17C10 Structure theory for Jordan algebras

Citations:

Zbl 0742.17001
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ben–Israel, A. and Greville, T.N. 1974. ”Generalized inverses: theory and applicasions”. Wiley, New York · Zbl 0305.15001
[2] Benslimane, Algebras, Groups and Geometries 6 pp 353– (1989)
[3] DOI: 10.1016/0024-3795(80)90230-X · Zbl 0433.15002 · doi:10.1016/0024-3795(80)90230-X
[4] DOI: 10.2307/2308576 · Zbl 0083.02901 · doi:10.2307/2308576
[5] DOI: 10.1007/BF01357724 · Zbl 0671.17003 · doi:10.1007/BF01357724
[6] Lopez Fernandez, Nondegenerate Jordan triple systems with descending chain condition on principal inner ideals
[7] Goodearl K.R., Monographs and Studies in Mathematics (1979)
[8] Jacobson N., Amer. Math. Soc. Colloq. Publ 39 (1968)
[9] Jacobson, N. 1981. ”Structure theory of Jordan algebras”. Vol.5, The University of Arkansas Lecture Notes. Fayetteville
[10] DOI: 10.1080/00927877808822274 · Zbl 0394.17009 · doi:10.1080/00927877808822274
[11] DOI: 10.2307/1969811 · Zbl 0065.01801 · doi:10.2307/1969811
[12] Koecher M., Rheinisch–Westfalische Akademie der Wissenschaften 307 pp 53– (1982)
[13] Loos O., Lecture Notes in Mathematics 460 (1975)
[14] DOI: 10.1016/0021-8693(91)90067-I · Zbl 0729.17023 · doi:10.1016/0021-8693(91)90067-I
[15] Loos O., Collect. Math 40 pp 109– (1989)
[16] Loos O., Complementation of inner ideals in Jordan pairs · Zbl 0827.17032
[17] DOI: 10.1090/S0002-9947-1969-0238916-9 · doi:10.1090/S0002-9947-1969-0238916-9
[18] Meyberg K., Lecture Notes (1972)
[19] Neher E., Lecture Notes in Mathematics 1280 (1987)
[20] DOI: 10.1017/S0305004100030401 · doi:10.1017/S0305004100030401
[21] DOI: 10.1007/BF01164279 · Zbl 0375.17011 · doi:10.1007/BF01164279
[22] DOI: 10.1080/00927877808822264 · Zbl 0402.17017 · doi:10.1080/00927877808822264
[23] Shirshov, Shestakov, Slinko and Zhevlakov. 1982. ”Rings that are nearly associative”. New York: Academic Press. · Zbl 0487.17001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.