×

Quantum \(SU(2)\) and \(E(2)\) groups. Contraction procedure. (English) Zbl 0759.17009

The author shows how the contraction procedure works in the theory of topological quantum groups. He considers the problem that quantum \(SU(2)\) and \(E(2)\) groups are related by contraction procedure on the \(C^*\)- level. In particular, he finds a number of formulae relating the comultiplications in quantum \(SU(2)\) and \(E(2)\) groups, and shows that the comultiplications in both groups are implemented by partial isometries. In addition, the author discovers an unexpected feature of quantum \(E(2)\) and describes the corresponding strange behavior of quantum \(SU(2)\). It turns out that in certain aspects they behave like locally compact semigroups.

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
22A15 Structure of topological semigroups
46L89 Other “noncommutative” mathematics based on \(C^*\)-algebra theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Baaj, S., Julg, P.: Théorie bivariant de Kasparow et opérateur non bornés dans lesC *-modules hilbertiens. C. R. Acad. Sci. Paris, Série I,296, 875–878 (1983), see also Baaj, S.: Multiplicateurs non bornés, Thèse 3ème Cycle, Université Paris VI, 11 Decembre 1980 · Zbl 0551.46041
[2] Barut, A.O., Raczka, R.: Theory of group representations and applications. Warszawa: PWN-Polish Scientific Publishers 1977 · Zbl 0471.22021
[3] Celeghini, E., Giachetti, R., Sorace, E., Tarlini, M.: Three-dimensional quantum groups from contractions ofSU(2)q. J. Math. Phys.31, 2548–2551 (1990) · Zbl 0725.17020 · doi:10.1063/1.529000
[4] Celeghini, E., Giachetti, R., Sorace, E., Tarlini, M.: The quantum Heisenberg groupH(1) q . J. Math. Phys.32, 1155–1158 (1991) · Zbl 0743.17016 · doi:10.1063/1.529311
[5] Celeghini, E., Giachetti, R., Sorace, E., Tarlini, M.: The three-dimensional Euclidean quantum groupE(3)q, and itsR-matrix. J. Math. Phys.32, 1159–1165 (1991) · Zbl 0743.17017 · doi:10.1063/1.529312
[6] Celeghini, E., Giachetti, R., Sorace, E., Tarlini, M.: contractions of quantum groups. Proceedings of the semester ’Quantum Groups’. Euler Math. Institute Leningrad Oct. Nov. 1990 · Zbl 0725.17020
[7] Inönü, E., Wigner, E.P.: On the contraction of groups and their representations. Proc. Natl. Acad. Sci. USA39, 510–524 (1956) · Zbl 0050.02601
[8] Gilmore, R.: Lie groups, Lie algebras and some of their applications. New York: Wiley 1974 · Zbl 0279.22001
[9] Lukierski, J., Ruegg, H., Nowicki, A., Tolstoy, V.N.:q-deformation of Poincaré algebra. Phys. Lett. B264, (3,4), 331 (1991) · doi:10.1016/0370-2693(91)90358-W
[10] Pedersen, G.K.:C *-algebras and their automorphism groups. London, New York, San Francisco: Academic Press, 1979 · Zbl 0416.46043
[11] Podleś, P.: Quantum spheres. Lett. Math. Phys.14, (3), 193–202 (1987) · Zbl 0634.46054 · doi:10.1007/BF00416848
[12] Podleś, P., Woronowicz, S. L.: Quantum deformation of Lorentz group. Commun. Math. Phys.130, 381–431 (1990) · Zbl 0703.22018 · doi:10.1007/BF02473358
[13] Vallin, J.M.:C *-algèbres de Hopf etC *-algèbres de Kac. Proc. Lond. Math. Soc. (3) 1 (1985) · Zbl 0577.46063
[14] Woronowicz, S.L.: Pseudospaces, pseudogroups and Pontryagin duality. Proceedings of the International Conference on Mathematical Physics, Lausanne 1979. Lecture Notes in Physics, Vol. 116 pp. 407–412. Berlin, Heidelberg, New York: Springer
[15] Woronowicz, S.L.: TwistedSU(2) group. An example of a non-commutative differential calculus. Publications of RIMS Kyoto University, Vol23, 117–181 (1987) · Zbl 0676.46050 · doi:10.2977/prims/1195176848
[16] Woronowicz, S.L.: Unbounded elements affiliated withC *-algebras and non-compact quantum groups. Commun. Math. Phys.136, 399–432 (1991) · Zbl 0743.46080 · doi:10.1007/BF02100032
[17] Woronowicz, S.L.: Operator equalities related to quantumE(2) group, Commun. Math. Phys.144, 417–428 (1992) · Zbl 0753.47016 · doi:10.1007/BF02101100
[18] Woronowicz, S.L.: QuantumE(2)-group and its Pontryagin dual, Lett. Math. Phys.23, 251–263 (1991) · Zbl 0752.17017 · doi:10.1007/BF00398822
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.