×

Uniqueness of complex geodesics and characterization of circular domains. (English) Zbl 0758.53039

The authors study complex geodesics for a complex Finsler metric \(F\) on a complex \(n\)-dimensional manifold \(M\) and prove a uniqueness theorem. Under the additional hypotheses that \(M\) is taut and that at a point \(p\in M\) the Kobayashi and Carathéodory metrics agree, they construct an exponential map for the Kobayashi metric, with interesting properties, and describe the relationship between the indicatrix \(I_ p(M)=\{v\in T_ pM\mid F(v)<1\}\) and small geodesic balls. Finally, exploiting the connection between intrinsic metrics and the complex Monge-Ampère equation on \(M\), the authors give a characterization for circular domains in \(\mathbb{C}^ n\).

MSC:

53C60 Global differential geometry of Finsler spaces and generalizations (areal metrics)
32W20 Complex Monge-Ampère operators
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] J. Bland, T. Duchamp:Moduli for pointed convex domains. Invent. Math.104, 61–112 (1991) · Zbl 0731.32010
[2] R. Braun, W. Kaup, H. Upmeier:On the automorphisms of circular and Reinhardt domains in complex Banach spaces. Man. Math.25, 97–133 (1978) · Zbl 0398.32001
[3] J.J. Faran:Hermitian Finsler metrics and the Kobayashi metric. J. Diff. Geom.31, 601–625 (1990) · Zbl 0709.53020
[4] F. Forelli:Pluriharmonicity in terms of harmonic slices. Math. Scand.41, 358–364 (1977) · Zbl 0373.31006
[5] G. Gentili:On non-uniqueness of complex geodesics in convex bounded domains. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.79, 90–97 (1985) · Zbl 0637.46018
[6] M. Hervé:Several complex variables. Local theory. Oxford University Press, London, 1963 · Zbl 0113.29003
[7] M. Klimek:Extremal plurisubharmonic functions and invariant pseudodistances. Bull. Soc. Math. France113, 231–240 (1985) · Zbl 0584.32037
[8] L. Lempert:La métrique de Kobayashi et la représentation des domaines sur la boule. Bull. Soc. Math. France109, 427–474 (1981) · Zbl 0492.32025
[9] L. Lempert:Holomorphic retracts and intrinsic metrics in convex domains. Anal. Math.8, 257–261 (1982) · Zbl 0509.32015
[10] L. Lempert:Intrinsic distances and holomorphic retracts. InComplex analysis and applications ’81, Varna, Bulgarian Academy of Sciences, Sofia, 1984, pp. 341–364
[11] L. Lempert:Holomorphic invariants, normal forms, and the moduli space of convex domains. Ann. Math.128, 43–78 (1988) · Zbl 0658.32015
[12] K.W. Leung, G. Patrizio, P.M. Wong:Isometries of intrinsic metrics on strictly convex domains. Math. Z.196, 343–353 (1987) · Zbl 0645.32005
[13] J. Milnor:Sommes de variétés différentiables et structure différentiables des spheres. Bull. Soc. Math. France87, 439–444 (1959) · Zbl 0096.17801
[14] M.Y. Pang:Finsler metrics with the properties of the Kobayashi metric on convex domains. Preprint, 1990
[15] G. Patrizio:A characterization of complex manifolds biholomorphic to a circular domain. Math. Z.189, 343–363 (1985) · Zbl 0591.32030
[16] G. Patrizio:Disques extremaux de Kobayashi et équation de Monge-Ampère complexe. C.R. Acad. Sci. Paris305, 721–724 (1987) · Zbl 0629.32021
[17] H. L. Royden:Complex Finsler metrics. InContemporary Mathematics. Proceedings of Summer Research Conference, American Mathematical Society, Providence, 1984, pp. 119–124
[18] H.L. Royden, P.M. Wong:Carathéodory and Kobayashi metrics on convex domains. Preprint (1983)
[19] H. Rund:The differential geometry of Finsler spaces. Springer, Berlin, 1959 · Zbl 0087.36604
[20] C.M. Stanton:A characterization of the ball by its intrinsic metrics. Math. Ann.264, 271–275 (1983) · Zbl 0511.32001
[21] W. Stoll:The characterization of strictly parabolic manifolds. Ann. Sc. Norm. Sup. Pisa7, 81–154 (1980) · Zbl 0438.32005
[22] E. Vesentini:Complex geodesics. Comp. Math44, 375–394 (1981) · Zbl 0488.30015
[23] B. Wong: Characterization of the ball in \(\mathbb{C}\) n by its automorphism group. Inv. Math.67, 253–257 (1977) · Zbl 0385.32016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.