×

On the Galois module structure over CM-fields. (English) Zbl 0757.11044

For a given number field \(K\) and a given finite abelian group \(\Delta\), let us call \(R(K,\Delta)\) the set of all realizations of \(\Delta\) as a Galois group \(\text{Gal}(N/K)\) of a tame field extension \(N\) of \(K\). Question: to what extent are the elements of \(R(K,\Delta)\) characterized by their “ramification” and their “Galois module structure”? The main result of this paper is that, for a given CM-field \(K\), the unramified realizations in \(R(K,\Delta)\) are invariant under the involution of \(R(K,\Delta)\) which is induced by complex conjugation on \(K\) and by inversion on \(\Delta\). Several applications are given. For example, if \(\Delta\) is of odd order and \(K\) is totally real, the answer to the above question is affirmative.

MSC:

11R33 Integral representations related to algebraic numbers; Galois module structure of rings of integers
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] J. Brinkhuis,Embedding problems and Galois modules, doctoral dissertation, Leiden (1981) · Zbl 0609.12008
[2] J. Brinkhuis,Normal integral bases and complex conjugation, J. reine angew. Math. 375/376, 157–166 (1987) · Zbl 0609.12009 · doi:10.1515/crll.1987.375-376.157
[3] J. Brinkhuis,Galois module structure as the obstruction to a local-global principle, to appear in the Journal of Algebra · Zbl 0745.11052
[4] J. Brinkhuis,Unramified abelian extensions of CM-fields and their Galois module structure, preprint (1989) · Zbl 0768.11045
[5] L. Childs,The group fo unramified Kummer extensions of prime degree, Proc. L.M.S. 35/3, 407–422 (1977) · Zbl 0374.13002 · doi:10.1112/plms/s3-35.3.407
[6] A. Fröhlich,Galois module structure of algebraic integers, Ergebnisse der Math. 3, 1 (1983) · Zbl 0501.12012
[7] V. Fleckinger et T. Nguyen Quang Do,Bases normales, unités et conjecture faible de Leopoldt, preprint (1990) · Zbl 0732.11063
[8] I. Kersten and J. Michaliček: \(\mathbb{Z}\) p -extensions of CM-fields, J. Number Theory, 32, no. 2, 131–150 (1989) · Zbl 0709.11057 · doi:10.1016/0022-314X(89)90023-1
[9] I. Kersten and J. Michaliček:On Vandiver’s conjecture and \(\mathbb{Z}\) p -extensions of \(\mathbb{Q}\)({\(\zeta\)} p n), J. Number Theory, 32, no. 3, 371–386 (1989) · Zbl 0709.11058 · doi:10.1016/0022-314X(89)90091-7
[10] L. McCulloh,Galois module structure of abelian extensions, J. reine angew. Math. 375/376, 259–306 (1987) · Zbl 0619.12008 · doi:10.1515/crll.1987.375-376.259
[11] M.J. Taylor,On Fröhlich’s conjecture for rings of integers of tame extensions, Invent. Math. 63, 41–79 (1981) · Zbl 0469.12003 · doi:10.1007/BF01389193
[12] M.J. Taylor,The Galois module structure of certain arithmetic principal homogeneous spaces, preprint, (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.