×

Realization theorems for semigroups with divisor theory. (English) Zbl 0751.20045

A commutative semigroup \(S\) with cancellation and unit element is said to have a divisor theory if there exists a homomorphism \(f\) of \(S\) into a free commutative semigroup \(D\) such that every element of \(D\) can be written as the GCD of some elements of \(f(S)\) and for all \(a,b\in S\), if \(f(a)\) divides \(f(b)\) in \(D\) then \(a\) divides \(b\) in \(S\) [L. Skula, Math. Z. 114, 113–120 (1970; Zbl 0177.03202)]. The authors show that every such semigroup can be written in the form \(S\cong S^ \times\times B(A)\), where \(S^ \times\) is the group of invertible elements of \(S\), \(A\) is a subset of an Abelian group \(G\) and \(B(A)\) (the block semigroup of \(A\)) consists of all finite sequences of elements of \(A\) with vanishing sum. Moreover the authors introduce arithmetically closed subsemigroups of a semigroup with divisor theory and show that every semigroup with divisor theory is isomorphic (up to units) to an arithmetically closed subsemigroup of the multiplicative semigroup of a Dedekind domain.

MSC:

20M14 Commutative semigroups
20M25 Semigroup rings, multiplicative semigroups of rings
20M10 General structure theory for semigroups

Citations:

Zbl 0177.03202
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Chouinard L. G. II,Krull semigroups and divisor class groups, Canad. J. Math.33 (1981), 1459–1468. · Zbl 0476.13009 · doi:10.4153/CJM-1981-112-x
[2] Clifford, A. H.,Arithmetic and ideal theory of commutative semigroups, Ann. of Math.39 (1938), 594–610. · Zbl 0019.19401 · doi:10.2307/1968637
[3] Fossum, R. M.,The divisor class group of a Krull domain, Springer (1973). · Zbl 0256.13001
[4] Fuchs, L.,Infinite abelian groups, Vol I, Academic Press (1970). · Zbl 0209.05503
[5] Geroldinger, A.,Über nicht-eindeutige Zerlegungen in irreduzible Elemente, Math. Z.197 (1988), 505–529. · Zbl 0618.12002 · doi:10.1007/BF01159809
[6] Gilmer, R.,Commutative semigroup rings, The University of Chicago Press, Chicago and London (1984). · Zbl 0566.20050
[7] Gundlack, K. B.,Einführung in die Zahlentheorie, B. I. Hochschultaschenbücher Bd.772 (1972).
[8] Halter-Koch, F.,Halbgruppen mit Divisorentheorie, Expo. Math.8 (1990), 27–66. · Zbl 0698.20054
[9] Halter-Koch, F.,Große Faktoren in der Klassengruppe algebraischer Zahlkörper, Acta Arith.39 (1981), 33–47. · Zbl 0475.12007
[10] Jacobson, N.,Basic Algebra I, Freeman (1985).
[11] Karpilovsky, G.,Unit groups of classical rings. Clarendon Press, Oxford (1988). · Zbl 0658.12002
[12] Krause, U.,On monoids of finite real character, Proc. Amer. Math. Soc.105 (1989), 546–554. · Zbl 0692.20058 · doi:10.1090/S0002-9939-1989-0953009-9
[13] Leedham-Green, C. R.,The class group of Dedekind domains, Trans. Amer. Math. Soc.163 (1972), 493–500. · Zbl 0231.13008 · doi:10.1090/S0002-9947-1972-0292806-4
[14] Lettl, G.,Subsemigroups of finitely generated group with divisor theory, Mh. Math.106 (1988), 205–210. · Zbl 0671.20059 · doi:10.1007/BF01318681
[15] Narkiewicz, W.,Finite abelian groups and factorization problems, Coll. Math.42 (1979), 319–330. · Zbl 0514.12004
[16] Narkiewicz, W.,Elementary and analytic theory of algebraic numbers, Springer (1990). · Zbl 0717.11045
[17] Narkiewicz, W.,Number Theory, World Scientific (1977). · Zbl 0422.10001
[18] Skula, L.,Divisorentheorie einer Halbgruppe, Math. Z.114 (1970), 113–120. · Zbl 0185.04804 · doi:10.1007/BF01110320
[19] Steinitz, E.,Algebraische Theorie der Körper, W. de Gruyter (1930). · JFM 56.0137.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.