×

Algebraic dimension of twistor spaces and scalar curvature of anti-self- dual metrics. (English) Zbl 0747.32021

Let \(t:Z\to M\) be the twistor fibration of an anti-self-dual 4-manifold \((M,g)\). We prove that the algebraic dimension \(a(Z)\) of \(Z\) is at most 1 when the conformal class \([g]\) contains a metric of zero scalar curvature and that equality holds exactly when this metric is Ricci-flat. We also show that if \(a(Z)\) is at least 2 then \([g]\) contains a metric of positive scalar curvature. These are generalizations of theorems of Y. S. Poon [Proc. Am. Math. Soc. 111, No. 2, 331-338 (1991; Zbl 0682.53067) and Math. Ann. 282, No. 4, 621-627 (1988; Zbl 0665.32014)] and together with a result of Gauduchon-Ville [P. Gauduchon, ‘Les structures holomorphes du fibré tangent vertical sur l’espace des twisteur d’une variété conforme autoduale’. Preprint (1989)] give a fairly complete account on the relation between \(a(Z)\) and the sign of the scalar curvature of the conformal class \([g]\).
Reviewer: M.Pontecorvo

MSC:

32J99 Compact analytic spaces
32A20 Meromorphic functions of several complex variables
32L25 Twistor theory, double fibrations (complex-analytic aspects)
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] [AHS] Atiyah, M.F., Hitchin, N.J., Singer, I.M.: Self-duality in four-dimensional Riemannian geometry. Proc. R. Soc. Lond. Ser. A362, 425-461 (1978) · Zbl 0389.53011 · doi:10.1098/rspa.1978.0143
[2] [C1] Campana, F.: On twistor spaces of the classC. J. Diff. Geom. (to appear)
[3] [C 2] Campana, F.: An application of twistor theory to the non-hyperbolicity of certain symplectic K?hler compact manifolds. Preprint (1990)
[4] [CLP] Campana, F., LeBrun, C., Poon, Y.S.: On complex manifolds bimeromorphic to K?hler manifolds. Preprint (1990)
[5] [G] Gauduchon, P.: Les structures holomorphes du fibr? tangent vertical sur l’espace des twisteur d’une variet? conforme autoduale. Preprint (1989)
[6] [H 1] Hitchin, N.J.: Compact four-dimensional Einstein manifolds. J. Differ. Geom.9, 435-441 (1974) · Zbl 0281.53039
[7] [H 2] Hitchin, N.J.: Linear field equations on self-dual spaces. Proc. R. Lond. Soc. A370, 173-191 (1980) · Zbl 0436.53058 · doi:10.1098/rspa.1980.0028
[8] [H 3] Hitchin, N.J.: K?hlerian twistor spaces. Proc. Lond. Math. Soc. (3)43, 133-150 (1981) · Zbl 0474.14024 · doi:10.1112/plms/s3-43.1.133
[9] [L 1] LeBrun, C.: On the topology of self-dual 4-manifolds. Proc. Am. Math. Soc.98, 637-640 (1986) · Zbl 0606.53029
[10] [L 2] LeBrun, C.: Explicit self-dual metrics on ??2#...#??2. J. Differ. Geom. (to appear) · Zbl 0725.53067
[11] [L 3] LeBrun, C.: Asymptotically-flat scalar-flat K?hler surfaces. Preprint (1990)
[12] [P 1] Pontecorvo, M.: On twistor spaces of anti-self-dual hermitian surfaces. Trans. Am. Math. Soc. (to appear) · Zbl 0754.53053
[13] [P 2] Pontecorvo, M.: Hermitian surfaces and a twistor space of algebraic dimension 2. Proc. Am. Math. Soc. (to appear) · Zbl 0733.32022
[14] [Po 1] Poon, Y.S.: Algebraic dimension of twistor spaces. Math. Ann.282, 621-627 (1988) · Zbl 0665.32014 · doi:10.1007/BF01462887
[15] [Po 2] Poon, Y.S.: Twistor spaces with meromorphic functions. Proc. Am. Math. Soc.111, 331-338 (1991) · Zbl 0682.53067 · doi:10.1090/S0002-9939-1991-1036990-0
[16] [Po 3] Poon, Y.S.: On the algebraic structure of twistor spaces. Preprint (1990)
[17] [S] Salamon, S.: Quaternionic K?hler manifolds. Invent. Math.67, 143-171 (1982) · Zbl 0486.53048 · doi:10.1007/BF01393378
[18] [Sh] Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom.20, 479-495 (1984) · Zbl 0576.53028
[19] [U] Ueno, K.: Classification theory of algebraic varieties and compact complex spaces (Lect. Notes Math. vol. 439) Berlin Heidelberg New York: Springer 1975 · Zbl 0299.14007
[20] [V] Ville, M.: Twistor examples of algebraic dimension zero threefolds. Invent. Math.103, 537-545 (1991) · Zbl 0722.32016 · doi:10.1007/BF01239526
[21] [Y] Yau, S.T.: On the curvature of compact hermitian manifold. Invent. Math.25, 213-239 (1974) · Zbl 0299.53039 · doi:10.1007/BF01389728
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.