×

Invariant measures exist under a summability condition for unimodal maps. (English) Zbl 0736.58030

Let \(f\) be a universal \(C^ 3\)-function on the interval with negative Schwarzian derivative. If at the critical value \(c\) the iterates \(f^ n=f\circ\ldots\circ f\) of \(f\) have the property that \((f^ n)'(f(c))\) tends to infinity “fast enough” then \(f\) admits a unique absolutely continuous (w.r.t. the Lebesgue measure) invariant probability measure. This generalizes a result of Collet and Eckmann.

MSC:

37A99 Ergodic theory
37D99 Dynamical systems with hyperbolic behavior
28D20 Entropy and other invariants
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] [B-Y] Benedicks, M., Young, L.S.: Absolutely continuous invariant measures and random perturbations for certain one-dimensional maps. Preprint (1990)
[2] [BL1] Blokh, A.M., Lyubich, M.Yu.: Attractors of maps of the interval. Funct. Anal. Appl.21, 70-71 (1987) (in Russian) · Zbl 0653.58022 · doi:10.1007/BF01078030
[3] [BL2] Blokh, A.M., Lyubich, M.Yu.: Measurable dynamics of S-unimodal maps of the interval. Preprint (1989)
[4] [C-E] Collet, P., Eckmann, J.-P.: Positive Liapounov exponents and absolute continuity for maps of the interval. Ergodic Theory Dyn. Syst.3, 13-46 (1983) · Zbl 0532.28014 · doi:10.1017/S0143385700001802
[5] [Ja] Jakobson, M.: Absolutely continuous measures for one-parameter families of one-dimensional maps. Comm. Math. Phys.81, 39-88 (1981) · Zbl 0497.58017 · doi:10.1007/BF01941800
[6] [Jo] Johnson, S.: Singular measures without restrictive intervals. Comm. Math. Phys.110, 655-659 (1987) · Zbl 0641.58024 · doi:10.1007/BF01207362
[7] [K1] Keller, G.: Invariant measures and Lyapounov exponents for S-unimodal maps. Preprint (1987)
[8] [K2] Keller, G.: Exponents, attractors, and Hopf decompositions for interval maps. Preprint (1988)
[9] [L.Y] Lasota, A., Yorke, J.: On the existence of invariant measures for piecewise monotonic transformations. Trans. A.M.S.186, 481-488 (1973) · Zbl 0298.28015 · doi:10.1090/S0002-9947-1973-0335758-1
[10] [M.S.1] de Melo, W., van Strien, S.: A structure theorem in one-dimensional dynamics, Ann. Math.129, 519-546 (1989) · Zbl 0737.58020 · doi:10.2307/1971516
[11] [M.S.2] de Melo, W., van Strien, S.: One-dimensional dynamics, to appear · Zbl 0791.58003
[12] [M.M.S.] Martens, M., de Melo, W., van Strien, S.: Julia-Fatou-Sullivan theory for real one-dimensional dynamics. Acta Math. (To appear) · Zbl 0761.58007
[13] [M] Misiurewicz, M.: Absolutely continuous measure for certain maps of an interval. Publ. I.H.E.S.53, 17-51 (1981) · Zbl 0477.58020
[14] [N1] Nowicki, T.: Symmetric S-unimodal properties and positive Liapounov exponents, Ergodic Theory Dyn. Syst.5, 611-616 (1985) · Zbl 0615.28009 · doi:10.1017/S0143385700003199
[15] [N2] Nowicki, T.: A positive Liapounov exponent of the critical value of S-unimodal maps implies uniform hyperbolicity. Ergodic Theory Dyn. Syst.8, 425-435 (1988) · Zbl 0638.58021 · doi:10.1017/S0143385700004569
[16] [N-S] Nowicki, T., van Strien, S.J.: Absolutely continuous invariant measures for C2 maps satisfying the Collet-Eckmann conditions. Invent. Math.93, 619-635 (1988) · Zbl 0659.58034 · doi:10.1007/BF01410202
[17] [Str1] van Strien, S.J.: On the creation of horseshoes. Lect. Notes Math.898, 316-351 (1981) · doi:10.1007/BFb0091922
[18] [Str2] van Strien, S.J.: Hyperbolicity and invariant measures for general C2 interval maps satisfying the Misiurewicz condition. Commun. Math Phys.128, 437-496 (1990) · Zbl 0702.58020 · doi:10.1007/BF02096868
[19] [Sz] Szlenk, W.: Some dynamical properties of certain differentiable mappings. Bol. Soc. Mat. Mex., II Ser.24, 57-87 (1979) · Zbl 0487.58013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.