×

Carriers of torsion-free groups. (English) Zbl 0733.20033

The carrier of a torsion-free abelian group A is defined to be the set \(c(A)=\{p\in \Pi |\) pA\(\neq A\}\) where \(\Pi\) denotes the set of all rational primes. The number-theoretical properties of the primes in c(A) had played a rôle in the authors’ earlier investigations on subgroups of algebraic number fields and division algebras [Pac. J. Math. 109, 165- 177 (1983; Zbl 0533.16009), Lect. Notes Math. 1006, 49-96 (1983; Zbl 0515.12006); Houston J. Math. 17, 207-226 (1991)]. Given an algebraic number field F whose ring of algebraic integers is \({\mathcal O}_ F\), let I(F) denote the set of all \({\mathcal O}_ F\)-submodules A of F which contain 1 and have the property that their quasi-endomorphism ring consists of the left multiplications by elements in F. Those members of I(F) which are closed under multiplication constitute a set of subrings of F which is denoted by E(F). The authors investigate which subsets \(\Xi\) of \(\Pi\) are carriers of groups in I(F) and which \(\Xi\) are carriers of rings in E(F). Their main results are: (1) a set \(\Xi\) of rational primes is the carrier of a group in I(F) if and only if \(\Xi\) is the carrier of a ring in E(F); and (2) in the case that F is a normal extension of \({\mathbb{Q}}\), the structure of the Galois group of F over \({\mathbb{Q}}\) determines, up to finitely many primes, those subsets of \(\Pi\) which are carriers of groups in I(F).
Reviewer: J.Hausen (Houston)

MSC:

20K15 Torsion-free groups, finite rank
20K30 Automorphisms, homomorphisms, endomorphisms, etc. for abelian groups
11R32 Galois theory
16S50 Endomorphism rings; matrix rings
PDFBibTeX XMLCite
Full Text: Numdam EuDML

References:

[1] D.M. Arnold , Finite rank torsion free abelian groups and rings , Lecture Notes in Mathematics , 931 , Springer-verlag , Berlin , Heidelberg , New York , 1982 . MR 665251 | Zbl 0493.20034 · Zbl 0493.20034 · doi:10.1007/BFb0094245
[2] M.F. Atiyah - I.G. Macdonald , Introduction to Commutative Algebra , Addison-Wesley , Reading , 1969 . MR 242802 | Zbl 0175.03601 · Zbl 0175.03601
[3] D.M. Arnold - R.S. Pierce - J.D. Reid - C.I. Vinsonhaler - W.J. Wickless , Torsion free abelian groups of finite rank projective as modules over their endomorphism rings , Jour. Alg. , 71 ( 1981 ), pp. 1 - 10 . MR 627421 | Zbl 0464.20039 · Zbl 0464.20039 · doi:10.1016/0021-8693(81)90102-2
[4] M.C.R. Butler , On locally free torsion-free rings of finite rank , J. Lond. Math. Soc. , 43 ( 1968 ), pp. 297 - 300 . MR 225878 | Zbl 0155.07202 · Zbl 0155.07202 · doi:10.1112/jlms/s1-43.1.297
[5] M.C.R. Butler , A Galois-theoretic description of certain quasi-endomorphism rings , Symposia Mathematica , 13 ( 1974 ), pp. 143 - 151 . MR 357514 | Zbl 0312.16026 · Zbl 0312.16026
[6] R.A. Bowshell - P. Schultz , Unital rings whose additive endomorphisms commute , Math. Ann. , 228 ( 1977 ), pp. 197 - 214 . MR 498691 | Zbl 0336.20040 · Zbl 0336.20040 · doi:10.1007/BF01420290
[7] A.L.S. Corner , Every countable reduced torsion-free ring is an endomorphism ring , Proc. Lond. Math. Soc. , ( 3 ), 13 ( 1963 ), pp. 687 - 710 . MR 153743 | Zbl 0116.02403 · Zbl 0116.02403 · doi:10.1112/plms/s3-13.1.687
[8] M. Dugas - A. Mader - C.I. Vinsonhaler , Large E-rings exist , J. Algebra , 108 ( 1987 ), pp. 88 - 101 . MR 887193 | Zbl 0616.20026 · Zbl 0616.20026 · doi:10.1016/0021-8693(87)90123-2
[9] N. Jacobson , Lectures in Abstract Algebra , vol. III , Von Nostrand , Princeton , 1964 . · Zbl 0124.27002
[10] G. Kolettis Jr. , Homogeneously decomposable modutes, Studies on Abelian Groups , Paris ( 1968 ), pp. 223 - 238 . MR 244228 | Zbl 0213.30802 · Zbl 0213.30802
[11] A. Mader - C.I. Vinsonhaler , Torsion-free E-modules , J. Alg. , 115 ( 1988 ), pp. 401 - 411 . MR 943264 | Zbl 0639.13010 · Zbl 0639.13010 · doi:10.1016/0021-8693(88)90266-9
[12] J. Neukirch , Class Field Theory , Springer-Verlag , Berlin , Heidelberg , New York , Tokyo , 1980 . MR 819231 | Zbl 0587.12001 · Zbl 0587.12001
[13] R.S. Pierce , Subrings of simple algebras , Mich. Math. J. , 7 ( 1960 ), pp. 241 - 243 . Article | MR 148707 | Zbl 0103.26803 · Zbl 0103.26803 · doi:10.1307/mmj/1028998434
[14] R.S. Pierce , Permutation representations with trivial set stabilizers , J. Alg. , 95 ( 1985 ), pp. 88 - 95 . MR 797657 | Zbl 0595.20007 · Zbl 0595.20007 · doi:10.1016/0021-8693(85)90095-X
[15] R.S. Pierce - C.I. Vinsonhaler , Realizing central division algebras , Pac. J. Math. , 109 ( 1983 ), pp. 165 - 177 ; correction, 130 ( 1987 ), pp. 397 - 399 . Article | MR 716296 | Zbl 0533.16009 · Zbl 0533.16009 · doi:10.2140/pjm.1983.109.165
[16] R.S. Pierce - C.I. Vinsonhalfr , Realizing algebraic number fields , Lecture Notes in Mathematics , 1006 , Springer-Verlag , New York ( 1982 / 83 ), pp. 49 - 96 . MR 722613 | Zbl 0515.12006 · Zbl 0515.12006
[17] R.S. Pierce - C.I. Vinsonhaler , Classifying E-rings (manuscript).
[18] J.D. Reid , On the ring of quasi-endomorphisms of a torsion-free group Topics in Abelian Groups , Chicago ( 1963 ), pp. 51 - 68 . MR 169915
[19] P. Ribenboim , Modules sur un anneau de Dedekind , Summa Brasil Math. , 3 ( 1952 ), pp. 21 - 36 . MR 55976 | Zbl 0049.16001 · Zbl 0049.16001
[20] P. Schultz , The endomorphism ring of the additive group of a ring , J. Aust. Math. Soc. , 15 ( 1973 ), pp. 60 - 69 . MR 338218 | Zbl 0257.20037 · Zbl 0257.20037 · doi:10.1017/S1446788700012763
[21] E. Weiss , Algebraic Number Theory , McGraw-Hill , New York , 1963 . MR 159805 | Zbl 0115.03601 · Zbl 0115.03601
[22] H. Zassenhaus , Orders as endomorphism rings of modules of the same rank , J. Lond. Math. Soc. , 42 ( 1967 ), pp. 180 - 182 . MR 206051 | Zbl 0145.26405 · Zbl 0145.26405 · doi:10.1112/jlms/s1-42.1.180
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.