×

Approximate inertial manifolds and effective viscosity in turbulent flows. (English) Zbl 0732.76001

Summary: The recently formulated concept of approximate inertial manifolds is exploited as a means for eliminating systematically the fine structure of the velocity field in two-dimensional flows. The resulting iterative procedure does not invoke any statistical properties of the solutions of Navier-Stokes equations. It leads to a modification of those equations, such that effective viscosity-like terms arise in a natural way. The rigorous mathematical considerations can be related to the corresponding physical concepts and intuition. The result leading to a numerical algorithm, essentially a nonlinear Galerkin method, provides a basis for large eddy simulation in which the subgrid model is derived from the properties of the Navier-Stokes equations, rather than from more or less justifiable ad hoc arguments. Some limited speculations concerning the expected results in three dimensions are also offered.

MSC:

76A02 Foundations of fluid mechanics
76F99 Turbulence
35Q35 PDEs in connection with fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Foias C., C. R. Acad. Sci. Paris 305 pp 497– (1987)
[2] Foias C., Math. Mod. Numer. Anal. 22 pp 93– (1988)
[3] DOI: 10.1017/S0022112085000209 · Zbl 0607.76054 · doi:10.1017/S0022112085000209
[4] DOI: 10.1016/0022-0396(88)90110-6 · Zbl 0643.58004 · doi:10.1016/0022-0396(88)90110-6
[5] DOI: 10.1016/0045-7825(90)90028-K · Zbl 0722.76039 · doi:10.1016/0045-7825(90)90028-K
[6] DOI: 10.1016/0045-7825(90)90028-K · Zbl 0722.76039 · doi:10.1016/0045-7825(90)90028-K
[7] DOI: 10.1016/0375-9601(88)90295-2 · doi:10.1016/0375-9601(88)90295-2
[8] DOI: 10.1007/BF01047831 · Zbl 0692.35053 · doi:10.1007/BF01047831
[9] DOI: 10.1016/0167-2789(90)90046-R · Zbl 0704.58030 · doi:10.1016/0167-2789(90)90046-R
[10] DOI: 10.1007/BF01053928 · Zbl 0702.35127 · doi:10.1007/BF01053928
[11] DOI: 10.1016/0022-247X(90)90061-J · Zbl 0723.35063 · doi:10.1016/0022-247X(90)90061-J
[12] DOI: 10.1137/0726063 · Zbl 0683.65083 · doi:10.1137/0726063
[13] DOI: 10.1063/1.865959 · Zbl 0602.76094 · doi:10.1063/1.865959
[14] DOI: 10.1016/0167-2789(88)90022-X · Zbl 0658.58030 · doi:10.1016/0167-2789(88)90022-X
[15] DOI: 10.1016/0167-2789(83)90297-X · Zbl 0584.35007 · doi:10.1016/0167-2789(83)90297-X
[16] DOI: 10.1016/0362-546X(80)90068-1 · Zbl 0451.35023 · doi:10.1016/0362-546X(80)90068-1
[17] DOI: 10.1016/0370-1573(85)90002-X · doi:10.1016/0370-1573(85)90002-X
[18] Temam R., J. Fac. Sci. Tokyo, Sec. IA 36 pp 629– (1989)
[19] DOI: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 · doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
[20] DOI: 10.1063/1.857413 · Zbl 1222.76055 · doi:10.1063/1.857413
[21] DOI: 10.1512/iumj.1987.36.36032 · Zbl 0658.35011 · doi:10.1512/iumj.1987.36.36032
[22] DOI: 10.1007/BF01061452 · Zbl 0648.76040 · doi:10.1007/BF01061452
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.