×

Diffusion, convection, adsorption, and reaction of chemicals in porous media. (English) Zbl 0731.76080

The authors apply homogenization techniques to the complex phenomenon of an incompressible flow through a porous medium accompanied by diffusion- convection and diffusion-reaction.
Starting from the usual assumption that the system consists of a periodic array of cells with a scale factor \(\epsilon\), first the equations for the micromodel are written, describing the various phenomena in a single cell (i.e. a grain \(+\) the liquid phase), namely: a) the flow, for which Stokes equation is assumed, imposing no-slip conditions on the boundary of the grains, b) the convection-diffusion of a solute, c) the reaction- diffusion on the surface of the skeleton.
Of course there is a coupling between the boundary conditions for b) and the reaction term for c) (which is assumed to be linear). The authors develop a complete theory, deriving several estimates on the solutions of the micromodel equations which allow them to show their convergence as \(\epsilon\to 0\) (in a suitable sense) to the solution of the macromodel equation. A comrehensive list of references is given.
Reviewer: A.Fasano (Firenze)

MSC:

76R50 Diffusion
76V05 Reaction effects in flows
76S05 Flows in porous media; filtration; seepage
35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Allaire, G., Homogenization of the Stokes flow in a connected porous medium, Asympt. Anal., 2, 203-222 (1989) · Zbl 0682.76077
[3] Arbogast, T.; Douglas, J.; Hornung, U., Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math., 21, 823-836 (1990) · Zbl 0698.76106
[4] Arbogast, T.; Douglas, J.; Hornung, U., Modeling of Naturally Fractured Reservoirs by Formal Homogenization Techniques, (Technical Report 81 (1988), Purdue University, Center for Applied Mathematics) · Zbl 0727.76110
[5] Bensoussan, A.; Lions, J. L.; Papanicolaou, G., Asymptotic Analysis for Periodic Structures (1978), North-Holland: North-Holland Amsterdam · Zbl 0411.60078
[6] Bhattacharya, R. N.; Gupta, V. K.; Walker, H. F., Asymptotics of solute dispersion in periodic porous media, SIAM J. Appl. Math., 49, 86-98 (1989) · Zbl 0664.60079
[7] Bourgeat, A. P., Nonlinear homogenization of two-phase flow equations, (Lightborn, J. H.; Rankin, M., Physical Mathematics and Nonlinear Partial Differential Equations (1985), Dekker: Dekker New York), 207-212
[8] Bourgeat, A. P., Homogenization of two-phase flow equations, (Proceedings of Symposia in Pure Mathematics, Vol. 45 (1986), Amer. Math. Soc: Amer. Math. Soc Providence, RI), 157-163
[9] Codegone, M.; Rodrigues, J.-F, On the homogenization of the rectangular dam problem, (Rend. Sem. Mat. Univ. Politec. Torino, 39 (1981)), 125-136 · Zbl 0514.35030
[10] Ene, H. I.; Poliševski, D., Thermal Flow in Porous Media (1987), Reidel: Reidel Dordrecht · Zbl 1017.35016
[11] Ericksen, J. L.; Kinderlehrer, D.; Kohn, R.; Lions, J.-L, Homogenization and Effective Moduli of Materials and Media (1986), Springer-Verlag: Springer-Verlag Berlin · Zbl 0622.00024
[12] Hornung, U., Miscible Displacement in Porous Media Influenced by Mobile and Immobile Water, (Technical Report 102 (1987), Department of Mathematics, Arizona State University: Department of Mathematics, Arizona State University Tempe) · Zbl 0751.76062
[13] Hornung, U., Applications of the homogenization method to flow and transport in porous media, (Shutie, Xiao, Lecture Notes of the Tsinghua Summer School on Mathematical Modeling of Flow and Transport in Porous Media (1989), World Scientific: World Scientific Singapore), to appear · Zbl 0707.76095
[14] Hornung, U., Compartment and micro-structure models for miscible displacement in porous media, Rocky Mountain J. Math., 21 (1991)
[15] Hornung, U.; Jäger, W., A model for chemical reactions in porous media, (Warnatz, J.; Jäger, W., Complex Chemical Reaction Systems. Mathematical Modeling and Simulation. Complex Chemical Reaction Systems. Mathematical Modeling and Simulation, Chemical Physics, Vol. 47 (1987), Springer-Verlag: Springer-Verlag Berlin), 318-334
[16] Hornung, U.; Showalter, R., Diffusion models for fractured media, J. Math. Anal. Appl., 147, 69-80 (1990) · Zbl 0703.76080
[17] Keller, J. B., Darcy’s law for flow in porous media and the two-space method, (Sternberg, R. L., Nonlinear Partial Differential Equations in Engineering and Applied Sciences (1980), Dekker: Dekker New York), 429-443
[18] Knabner, P., Transport gelöster Stoffe in sorbierenden porösen Medien, (Habilitationsschrift (1988), Fakultät für Mathematik, Universität Augsburg) · Zbl 0704.35072
[20] Mikelić, A.; Aganović, I., Homogenization in a porous medium under a non-homogeneous boundary condition, Boll. Un. Mat. Ital. (A), 1, 171-180 (1987) · Zbl 0629.76102
[21] Rubinstein, J.; Mauri, R., Dispersion and convection in periodic porous media, SIAM J. Appl. Math., 46, 1018-1023 (1986) · Zbl 0614.76098
[22] Sanchez-Palencia, E., Non-Homogeneous Media and Vibration Theory, Springer Lecture Notes in Physics, Vol. 129 (1980) · Zbl 0432.70002
[23] Sattel-Schwind, K., Untersuchung über Diffusionsvorgänge bei der Gelpermeations-Chromatographie von Poly-\(p\)-Methylstyrol, (Dissertation (1988), Fachbereich Chemie, Universität Heidelberg)
[24] Siebel, K., Diffusion in dispersen Medien. Homogenisierung, (Diplomarbeit (1988), Fachbereich Mathematik, Universität Heidelberg)
[25] Tartar, L., Incompressible fluid flow in a porous medium—Convergence of the homogenization process, (Sanchez-Palencia, E., Non-Homogeneous Media and Vibration Theory. Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, Vol. 127 (1980), Springer-Verlag: Springer-Verlag Berlin), 368-377
[26] Vogt, C., A homogenization theorem leading to a Volterra integro—differential equation for permeation chromatography, (preprint 155 SFB 123 (1982), Universität Heidelberg)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.