×

The cohomological dimension of the quotient field of the two dimensional complete local domain. (English) Zbl 0731.13010

Let A be a complete Noetherian local domain with separable closed residue field k and with quotient field K. If \(p\neq char(K)\) is prime, let \(cd_ p(K)\) be the p-cohomological dimension of the absolute Galois group \(Gal(K^{sep}/K)\), where \(K^{sep}\) denotes the separable closure of K. In the case when \(\dim (A)=2\), \(char(k)=p\) and \(char(K)=0\), the author proves a conjecture of Artin, namely, that \(cd_ p(K)=\dim (A)+\dim_ k(\Omega_ k^ 1)\), where \(\Omega_ k^ 1=\Omega^ 1_{k/{\mathbb{Z}}}\) is the absolute differential module.

MSC:

13D05 Homological dimension and commutative rings
13G05 Integral domains
13H99 Local rings and semilocal rings
PDFBibTeX XMLCite
Full Text: Numdam EuDML

References:

[1] Abhyankar, S. ; Resolution of singularities for arithmetical surfaces. In Arithmetical Algebraic Geometry , New York: Harper and Row, (1963), 111-152. · Zbl 0147.20503
[2] Artin, M. ; Dimension cohomologique: Premiers résultats, in SGA 4, Tome 3 , Lecture Notes in Mathematics 305, (1973), 43-63. · Zbl 0269.14007 · doi:10.1007/BFb0070716
[3] Bloch, S. and Kato, K. ; p-adic étale coholology . Publ. Math. I.H.E.S. 63 (1986) 107-152. · Zbl 0613.14017 · doi:10.1007/BF02831624
[4] Gabber, O. ; A lecture at I.H.E.S. on March in 1981.
[5] Hironaka, H. ; Desingularization of excellent surface . Lecture at Advanced Seminar in Algebraic Geometry, Bowdoin College, Summer 1967, notes by Bruce Bennett.
[6] Kato, K. ; A generalization of local class field theory by using K-groups, I . J. fac. Sci. Univ. Tokyo Sec. IA 26 (1979) 303-376: II Ibid 27 (1980) 602-683: III ibid 29 (1982) 31-34. · Zbl 0428.12013
[7] Kato, K. ; Galois cohomology of complete discrete valuation fields . Lecture Notes in Mathematics 967 (1982) 215-238. · Zbl 0506.12022
[8] Kato, K. and Kuzumaki, T. ; The dimension of fields and algebraic K-theory . Journal of Number Theory Vol. 24 No. 2 (1986) 229-244. · Zbl 0608.12029 · doi:10.1016/0022-314X(86)90105-8
[9] Matumura, H. ; Commutative Algebra . W. A. Benjamin Co., New York 2nd ed. (1980).
[10] Merkuriev, A.S. and Suslin, A.A. ; K-cohomology of Severi-Brauer variety and norm residue homomorphism . Math. USSA-Izv. 21 (1984) 307-340. · Zbl 0525.18008 · doi:10.1070/IM1983v021n02ABEH001793
[11] Milnor, J. ; Introduction to algebraic K-theory . Ann. Math. Stud. 72 (1971). · Zbl 0237.18005 · doi:10.1515/9781400881796
[12] Saito, S. ; Arithmetic on two dimensional local rings . Invent. Math. 85 (1986) 379-414. · Zbl 0609.13003 · doi:10.1007/BF01389096
[13] Satz, S.S. ; Profinite groups, arithmetic and geometry . Ann. Math. Stud. 67 (1972). · Zbl 0236.12002 · doi:10.1515/9781400881857
[14] Serre, J.-P. ; Cohomologie Galoisienne . Lecture Notes in Mathematics 5 (1965). · Zbl 0136.02801
[15] Serre, J.-P. ; Sur la dimension cohomologique des groupes profinis . Topology 3 (1965) 413-420. · Zbl 0136.27402 · doi:10.1016/0040-9383(65)90006-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.