×

On the theory of quantum groups. (English) Zbl 0726.17016

Some time ago S. L. Woronowicz [Publ. Res. Inst. Math. Sci. 23, 117-181 (1987; Zbl 0676.46050)]; Commun. Math. Phys. 111, 613-665 (1987; Zbl 0627.58034)] introduced a one-parameter family of compact matrix quantum groups \(SU_{\mu}(N+1)\), \(\mu\in (0,1]\). Later M. Rosso [C. R. Acad. Sci., Paris, Sér. I 304, 323-326 (1987; Zbl 0617.16005)] showed that \(SU_{\mu}(N+1)\) is related by duality to the q-deformation \(U_ q(su(N+1))\) of the universal enveloping algebra \(U(su(N+1))\) introduced independently by V. G. Drinfel’d [Dokl. Akad. Nauk SSSR 283, 1060-1064 (1985; Zbl 0588.17015); Proc. Int. Congr. Math., Berkeley 1986, Vol. 1, 798-820 (1987; Zbl 0667.16003)] and M. Jimbo [Lett. Math. Phys. 10, 63-69 (1985; Zbl 0587.17004); 11, 247-252 (1986; Zbl 0602.17005)], where \(q=e^ h\in {\mathbb{C}}\) in general and in this duality relation one has to restrict q,h\(\in {\mathbb{R}}\) and \(\mu =e^{-2h}\). Similarly, L. D. Faddeev, N. Yu. Reshetikhin and L. A. Takhtadzhan [Quantization of Lie groups and Lie algebras, Algebraic Analysis 1, 129-139 (1989; Zbl 0677.17010)] and M. Rosso [preprint Ecole Polytechnique 1989] constructed by duality from \(U_ q({\mathfrak g})\), with \({\mathfrak g}\) a Lie algebra of type \(B_ N\), \(C_ N\), \(D_ N\), the compact matrix quantum groups \(SO_{\mu}(N)\) and \(Sp_{\mu}(N).\)
Let \(G_ h\) be any of the matrix quantum groups \(SU_{\mu}(N+1)\), \(SO_{\mu}(N)\) or \(Sp_{\mu}(N)\), let \({\mathcal A}_ h\) be the *-Hopf algebra of representative elements corresponding to \(G_ h\). The author shows that the algebra \({\mathcal A}_ h\) is isomorphic as a co-algebra to the algebra \({\mathcal A}_ 0\) (i.e., to the representative functions on the classical group). Thus \({\mathcal A}_ h\) may be identified with \({\mathcal A}_ 0\), however, with an associative product, called the star-product, which is a deformation of the original commutative product of \({\mathcal A}_ 0\), connected to the Fourier transform in a manner similar to the construction of quantum mechanics from classical mechanics in phase space. In fact the map \(W_ h: {\mathcal A}_ 0\to {\mathcal A}_ h\) which realizes the above isomorphism is an analog of the Weyl correspondence and is called the Weyl transformation.
Reviewer: V.Dobrev (Sofia)

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
16W30 Hopf algebras (associative rings and algebras) (MSC2000)
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] WoronowiczS. L., Group structure on noncommutative spaces, in A.Jadczyk (ed.),Fields and Geometry 1986, World Scientific, Singapore, 1986.
[2] Drinfeld, V. G., Quantum groups,Proc. ICM Berkeley, 1986.
[3] JimboM., Aq-difference analogue ofU(g) and the Yang-Baxter equation,Lett. Math. Phys. 10, 63 (1985). · Zbl 0587.17004 · doi:10.1007/BF00704588
[4] WoronowiczS. L., Twisted SU(2) group. An example of a non-commutative differential calculus,Publ. RIMS, Kyoto Univ. 23, 117 (1978). · Zbl 0676.46050 · doi:10.2977/prims/1195176848
[5] WoronowiczS. L., Compact matrix pseudogroups,Commun. Math. Phys. 111, 613 (1987). · Zbl 0627.58034 · doi:10.1007/BF01219077
[6] WoronowiczS. L., Pseudospaces, pseudogroups, and Pontryagin duality,Proc. ICMP, Lausanne 1979. Lecture Notes in Physics116, Springer-Verlag, New York, 1980.
[7] RossoM., Comparaison des groupes SU(2) quantiques de Drinfeld et Woronowicz,C.R. Acad. Sci. Paris Série I 304, 323 (1987).
[8] RossoM., Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra,Commun. Math. Phys. 117, 581 (1988). · Zbl 0651.17008 · doi:10.1007/BF01218386
[9] Woronowicz, S. L., Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups, Preprint Universiteit Leuven, Belgium. · Zbl 0664.58044
[10] Rosso, M., Groupes quantiques compacts de matrices de typeB N ,C N ,D N , Preprint Ecole Polytechnique, 1989.
[11] WeylH.,The Theory of Groups and Quantum Mechanics, Methuen, London, 1931.
[12] GrossmannA., LoupiasG., and SteinE. M., An algebra of pseudodifferential operators and quantum mechanics in phase space,Ann. Inst. Fourier, Grenoble 18, 343 (1968).
[13] BayenF., FlatoM., FronsdalC., LichnerowiczA., and SternheimerD., Deformation theory and quantization,Ann. of Phys. 111, 61 (1978). · Zbl 0377.53024 · doi:10.1016/0003-4916(78)90224-5
[14] NijenhuisA., On a class of common properties of some different types of algebras,Niew Arch. Wisk. (3) 17, 17 (1968).
[15] Woronowicz, S. L., Differential calculus on compact matrix pseudogroups (quantum groups), Preprint 2/88 Warszawa 1988. · Zbl 0664.58044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.