×

Algebraic and analytic cohomology of quasiprojective varieties. (English) Zbl 0716.32008

The main result of the paper is the following: let X be a Zariski open subset of \({\mathbb{P}}^ n_{{\mathbb{C}}}\) and \({\mathcal F}\) a coherent sheaf on X. Then the image of the comparison map \[ \alpha: H^{n-2}(X,{\mathcal F}) \to H^{n-2}(X^{an},{\mathcal F}^{an}) \] is dense.
For the proof, the essential ingredient is the following geometric construction: let \(A\subset {\mathbb{P}}^ n_{{\mathbb{C}}}\) be an algebraic subset of pure codimension q. Then there exists a finite surjective map \(\pi: X\to {\mathbb{P}}^ n_{{\mathbb{C}}}\), such that \(\pi^{- 1}(A)=\cup^{r}_{i=1}A_ i\) and \(X\setminus A_ i\) is the union of q open affine subsets. Moreover, a Mayer-Vietoris and a trace argument are used to obtain the desired result for \(X={\mathbb{P}}^ n\setminus A.\)
It seems to the reviewer that the density of \(\alpha\) is related to the injectivity of the comparison map \[ H^ 1(A,{\mathcal G}| A) \to H^ 1(A,{\mathcal G}| A^{\bigwedge}) \] (assume \({\mathcal F}\) to be locally free on \({\mathbb{P}}^ n\) and \({\mathcal G}:=\omega_{{\mathbb{P}}^ n}\otimes {\mathcal F}^ v)\) which is in accordance with conjecture (2.3) of the paper of the reviewer and T. Peternell [Comp. Math. 74, 299-325 (1990; Zbl 0709.32009)]. From this point of view, some questions posed by the author admit an answer and moreover, in the reviewer’s opinion, a generalization of the main result should be possible in this way.
Reviewer: S.Kosarew

MSC:

32C35 Analytic sheaves and cohomology groups
32F10 \(q\)-convexity, \(q\)-concavity
14F99 (Co)homology theory in algebraic geometry

Citations:

Zbl 0709.32009
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Atiyah, M.F., Macdonald, I.G.: Introduction to commutative algebra. Reading, Mass: Addison-Wesley 1969 · Zbl 0175.03601
[2] Barth W.: Über die analytische CohomologiegruppeH n?1(? n ?A, F). Invent. Math.9, 135-144 (1970) · Zbl 0186.40403 · doi:10.1007/BF01404553
[3] Grauert, H., Remmert, R.: Theorie der Steinschen Räume. Berlin Heidelberg New York: Springer 1977 · Zbl 0379.32001
[4] Grothendieck, A.: Rev?tements etales et groupe fondamental. SGA1. (Lect. Notes. Math., Vol. 224). Berlin Heidelberg New York: Springer 1971
[5] Hartshorne, R.: Algebraic geometry. Berlin Heidelberg New York: Springer 1977 · Zbl 0367.14001
[6] Hartshorne, R.: Ample subvaieties of algebraic varieties. (Lect. Notes Math., Vol. 156). Berlin Heidelberg New York: Springer 1981
[7] Hartshorne, R.: Cohomological dimension of algebraic varieties. Ann. Math.88, 403-450 (1968) · Zbl 0169.23302 · doi:10.2307/1970720
[8] Hironaka, H., Matsumura, H.: Formal functions and formal embeddings. J. Math. Soc. Jap.20, 52-82 (1968) · Zbl 0157.27701 · doi:10.2969/jmsj/02010052
[9] Okonek, C.: A comparison theorem. Math. Ann.273, 273-276 (1986) · Zbl 0562.14002 · doi:10.1007/BF01451406
[10] Rudin, W.: Functional analysis. New York Düsseldorf: McGraw-Hill 1973 · Zbl 0253.46001
[11] Schneider, M.: Über eine Vermutung von Hartshorne. Math. Ann.201, 221-229 (1973) · Zbl 0255.32009 · doi:10.1007/BF01427944
[12] Serre, J.-P.: Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier6, 1-42 (1956)
[13] Siu, Y.T.: Analytic sheaf cohomology groups of dimension ofn ofn-dimensional complex spaces. Trans. Am Math. Soc.143, 77-94 (1966)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.