×

Harmonic bundles on noncompact curves. (English) Zbl 0713.58012

This paper carries out a program outlined in the author’s paper in J. Am. Math. Soc. 1, No.4, 867-918 (1988; Zbl 0669.58008): extending to noncompact algebraic curves X the known correspondence between Higgs bundles and local systems. The main problem is the behaviour of certain singularities at the punctures of X. It builds on the theorem of Narasimhan-Seshadri on stable vector bundles, the theory of harmonic maps of Riemann surfaces, variations of Hodge structures, and differential equations with regular singularities. All together, here is a marvellous example of interrelationships between algebraic/differential geometry and analysis.
Reviewer: J.Eells

MSC:

58E20 Harmonic maps, etc.
14E20 Coverings in algebraic geometry
58E15 Variational problems concerning extremal problems in several variables; Yang-Mills functionals
14D07 Variation of Hodge structures (algebro-geometric aspects)
58A14 Hodge theory in global analysis
30F99 Riemann surfaces

Citations:

Zbl 0669.58008
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lars V. Ahlfors, An extension of Schwarz’s lemma, Trans. Amer. Math. Soc. 43 (1938), no. 3, 359 – 364. · Zbl 0018.41002
[2] Kevin Corlette, Flat \?-bundles with canonical metrics, J. Differential Geom. 28 (1988), no. 3, 361 – 382. · Zbl 0676.58007
[3] Maurizio Cornalba and Phillip Griffiths, Analytic cycles and vector bundles on non-compact algebraic varieties, Invent. Math. 28 (1975), 1 – 106. · Zbl 0293.32026 · doi:10.1007/BF01389905
[4] Pierre Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, Vol. 163, Springer-Verlag, Berlin-New York, 1970 (French). · Zbl 0244.14004
[5] S. K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3) 50 (1985), no. 1, 1 – 26. · Zbl 0529.53018 · doi:10.1112/plms/s3-50.1.1
[6] S. K. Donaldson, Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987), no. 1, 231 – 247. · Zbl 0627.53052 · doi:10.1215/S0012-7094-87-05414-7
[7] S. K. Donaldson, Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. (3) 55 (1987), no. 1, 127 – 131. · Zbl 0634.53046 · doi:10.1112/plms/s3-55.1.127
[8] James Eells Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109 – 160. · Zbl 0122.40102 · doi:10.2307/2373037
[9] P. Griffiths, Periods of integrals on algebraic manifolds. I, II, Amer. J. Math. 90 (1968); III, Inst. Hautes Études Sci. Publ. Math. 38 (1970). · Zbl 0188.24801
[10] Phillip Griffiths , Topics in transcendental algebraic geometry, Annals of Mathematics Studies, vol. 106, Princeton University Press, Princeton, NJ, 1984. · Zbl 0528.00004
[11] Phillip Griffiths and Wilfried Schmid, Locally homogeneous complex manifolds, Acta Math. 123 (1969), 253 – 302. · Zbl 0209.25701 · doi:10.1007/BF02392390
[12] Richard S. Hamilton, Harmonic maps of manifolds with boundary, Lecture Notes in Mathematics, Vol. 471, Springer-Verlag, Berlin-New York, 1975. · Zbl 0308.35003
[13] N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987), no. 1, 59 – 126. · Zbl 0634.53045 · doi:10.1112/plms/s3-55.1.59
[14] M. Kashiwara, Vanishing cycle sheaves and holonomic systems of differential equations, Algebraic geometry (Tokyo/Kyoto, 1982) Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, pp. 134 – 142. · doi:10.1007/BFb0099962
[15] B. Malgrange, Polynômes de Bernstein-Sato et cohomologie évanescente, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 243 – 267 (French). · Zbl 0528.32007
[16] V. B. Mehta and C. S. Seshadri, Moduli of vector bundles on curves with parabolic structures, Math. Ann. 248 (1980), no. 3, 205 – 239. · Zbl 0454.14006 · doi:10.1007/BF01420526
[17] M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. (2) 82 (1965), 540 – 567. · Zbl 0171.04803 · doi:10.2307/1970710
[18] Wilfried Schmid, Variation of Hodge structure: the singularities of the period mapping, Invent. Math. 22 (1973), 211 – 319. · Zbl 0278.14003 · doi:10.1007/BF01389674
[19] Carlos T. Simpson, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc. 1 (1988), no. 4, 867 – 918. · Zbl 0669.58008
[20] -, Higgs bundles and local systems, preprint, Princeton Univ., 1989.
[21] K. Uhlenbeck and S.-T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S257 – S293. Frontiers of the mathematical sciences: 1985 (New York, 1985). · Zbl 0615.58045 · doi:10.1002/cpa.3160390714
[22] Steven Zucker, Hodge theory with degenerating coefficients. \?\(_{2}\) cohomology in the Poincaré metric, Ann. of Math. (2) 109 (1979), no. 3, 415 – 476. · Zbl 0446.14002 · doi:10.2307/1971221
[23] Hélène Esnault and Eckart Viehweg, Logarithmic de Rham complexes and vanishing theorems, Invent. Math. 86 (1986), no. 1, 161 – 194. · Zbl 0603.32006 · doi:10.1007/BF01391499
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.