×

Perturbative solutions of quantum mechanical problems by symbolic computation. (English) Zbl 0712.65111

Symbolic computation is an effective alternative to many existing calculational methods for obtaining quantitative results. It represents the next level beyond the digital calculator as an efficient extension of the critical human mind.
In this 30-page paper the authors have shown that the second author’s decoupling technique is useful to achieve approximate solutions to the one particle Dirac equation, which is an example to meaningfully check the power of the new approach for solving quantum mechanical problems by perturbation theory. Here the use of an infinite basis set is avoided and each coefficient of the perturbation series is arrived at in a closed form.
The techniques presented can be applied to other situations also and illustrations are given to indicate that symbolic computation has a great future.
Reviewer: P.Achuthan

MSC:

65Z05 Applications to the sciences
68W30 Symbolic computation and algebraic computation
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
35Q40 PDEs in connection with quantum mechanics

Software:

Maple
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Char, B. W.; Geddes, K. O.; Gonnet, G. H.; Monagan, M. B.; Watt, S. M., Maple Users Guide (1988), Watcom: Watcom Waterloo, Canada
[2] Henrici, P., (Applied and Computational Complex Analysis, Vol. II (1974), Wiley: Wiley New York)
[3] Rose, M. R., Relativistic Electron Theory (1961), Wiley: Wiley New York · Zbl 0096.43905
[4] Moore, R. A., Canad. J. Phys., 53, 1240 (1975)
[5] Moore, R. A., Canad. J. Phys., 53, 1247 (1975)
[6] Moore, R. A., Canad. J. Phys., 53, 1251 (1975)
[7] Tomishima, Y., Canad. J. Phys., 57, 2114 (1979)
[8] Moore, R. A.; Lee, S., Canad. J. Phys., 59, 1614 (1981)
[9] Lee, B. S., (Thesis, Extension of the Moore Procedure for Obtaining Approximate Solutions to the One-Particle Dirac Equation to First and Second Order (1981)), (unpublished)
[10] Moore, R. A.; Scott, T. C., Canad. J. Phys., 64, 297 (1985)
[11] Boyce, W. E.; DiPrima, R. C., Elementary Differential Equations and Boundary Value Problems (1977), Wiley: Wiley New York · Zbl 0807.34002
[12] Abramowitz, M.; Stegun, I. A., (Mathematical Handbook of Functions with Formulas, Graphs and Mathematical Tables (1972), Dover: Dover New York), 9th printing · Zbl 0543.33001
[13] Blatt, J. M.; Weisskopf, V. F., Theoretical Nuclear Physics (1958), Wiley: Wiley New York, 4th printing
[14] Byron, F. W.; Fuller, R. W., Mathematics of Classical and Quantum Physics (1970), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0195.55704
[15] Infeld, L.; Hull, T. E., Rev. Mod. Phys., 23, 21 (1951)
[16] Hylleraas, E. A., Z. Phys., 65, 209 (1930)
[17] Dalgarno, A.; Stewart, A. L., (Proc. Roy. Soc. A, 238 (1956)), 269
[18] Hirschfelder, J. O.; Byers Brown, W.; Epstein, S. T., (Advances in Quantum Chemistry, Vol. 1 (1964), Academic Press: Academic Press New York), 255
[19] Dupont-Bourdelet, F.; Tillieu, J.; Guy, J., J. Phys. Radium, 21, 776 (1960)
[20] Scott, T. C., A New Approach to Definite Integration for Maple 4.3, (Maple Newsletter No. 3 (1988), Symbolic Computation Group: Symbolic Computation Group Waterloo, Canada), (unpublished)
[21] Geddes, K. O.; Scott, T. C., (Kaltofen, E.; Watt, S. M., Proceedings of Computers and Mathematics (1989), MIT: MIT USA), 192
[22] Soff, G.; Muller, B.; Rafelski, J.; Greiner, W., Z. Naturforsch., 28, 1389 (1973)
[23] Greiner, W.; Muller, B.; Rafelski, J., Quantum Electrodynamics of Strong Fields (1985), Springer: Springer New York
[24] Vrscay, E. R.; Hamidian, H., Phys. Lett. A, 130, 141 (1988)
[25] Critchfield, C. L., J. Math. Phys., 17, 261 (1976)
[26] Baker, G.; Graves-Morris, P., (Encyclopedia of Mathematics and Its Applications, Vol. 14 (1981), Addison-Wesley: Addison-Wesley Reading, MA)
[27] Breit, G., Phys. Rev., 34, 553 (1929)
[28] Breit, G., Phys. Rev., 39, 616 (1932)
[29] Scott, T. C.; Moore, R. A.; Fee, G. J.; Monagen, M. B.; Labahn, G.; Geddes, K. O., Int. J. Mod. Phys. C (1990), to appear in
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.