×

On convex bodies that permit packings of high density. (English) Zbl 0709.52006

A theorem of Minkowski asserts that an n-dimensional convex body permits a lattice packing of density 1 only if it is a centrally symmetric polytope with at most \(2(2^ n-1)\) facets. The author addresses the associated stability problem: whether a convex body that permits a packing of high density is in some sense close to such a polytope. If K is a convex body in \(E^ n\) and \(S\subset E^ n\), the collection \({\mathcal P}(K,S)=\{K+s:\) \(s\in S\}\) is called a translative packing in \(E^ n\) if any two members of \({\mathcal P}(K,S)\) have no interior points in common. Let h denote Hausdorff distance and let d denote diameter.
The author proves the following theorem: Let K be a convex body in \(E^ n\) that permits a translative packing of density \(\delta\). Then there is a centrally symmetric convex body \(K^ 0\) (which is the translate of \(K^*\) whose center coincides with the centroid of K) such that \[ h(K,K^ 0)\leq \theta_ nd(K)((1-\delta)/\delta)^{1/(n+1)}, \] where \(\theta_ n=4\cdot 2^{1/(n+1)}\cdot 3^{(n-1)/n} n^{n/(n+1)}<12n\). Furthermore, there exist an affine copy \(\tilde K\) of K and a normalized convex body Z such that Z is centrally symmetric with respect to the centroid of \(\tilde K\) and \[ h(\tilde K,Z)\leq \mu_ n(1+\delta)^{1/(n+1)}, \] where \(\mu_ n=(8/\kappa_ n^{1/n})4^{1/(n+1)}\cdot 3^{(n-1)/n} n^{(3n+1)/2(n+1)}<12n^ 2.\)
He also proves an analogous theorem concerning the Hausdorff distance between i) centrally symmetric convex bodies in \(E^ n\) that permit lattice packings of high density \(<1\) and polytopes of the kind discussed above and ii) centrally symmetric convex bodies in \(E^ 2\) that permit translative coverings of density \(\delta <1\) and certain hexagons.
Reviewer: H.Herda

MSC:

52C17 Packing and covering in \(n\) dimensions (aspects of discrete geometry)
52B15 Symmetry properties of polytopes
11H31 Lattice packing and covering (number-theoretic aspects)
52C15 Packing and covering in \(2\) dimensions (aspects of discrete geometry)
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] F. Behrend, Über die kleinste umbeschriebene und die grösste einbeschriebene Ellipse eines konvexen Bereichs.Math. Ann.115 (1938), 379-411. · Zbl 0018.17502 · doi:10.1007/BF01448948
[2] I. G. van der Corput and H. Davenport, On Minkowski’s fundamental theorem in the geometry of numbers.Nederl. Akad. Wetensch. Proc. Ser. B49 (1946), 701-707. · Zbl 0060.11210
[3] Fejes Tóth, G.; Gruber, P. M. (ed.); Wills, J. M. (ed.), New results in the theory of packing and covering, 318-359 (1983), Basel · Zbl 0533.52007 · doi:10.1007/978-3-0348-5858-8_14
[4] H. Groemer. Eine Bemerkung über die Überdeckung des Raumes mit unsymmetrischen konvexen Körpern.Monatsh. Math.66 (1962), 410-416. · Zbl 0105.35001 · doi:10.1007/BF01298236
[5] H. Groemer, Über Zerlegungen des Euklidischen Raumes.Math. Z.79 (1962), 364-375. · Zbl 0131.20302 · doi:10.1007/BF01193129
[6] H. Groemer, On the Brunn-Minkowski theorem.Geom. Dedicata, to appear. · Zbl 0652.52009
[7] John, F., Extremum problems with inequalities as subsidiary conditions, 187-204 (1948), New York · Zbl 0034.10503
[8] K. Leichtewiss, Über die affine Exzentrizität konvexer Körper.Arch. Math. (Basel)10 (1959), 187-199. · Zbl 0089.38303 · doi:10.1007/BF01240785
[9] H. Minkowski,Geometrie der Zahlen, Teubner, Leipzig, Berlin, 1910. (Reprint: Chelsea, New York, 1953.) · JFM 41.0239.03
[10] C. A. Rogers,Packing and Covering, Cambridge University Press, Cambridge, 1964. · Zbl 0176.51401
[11] Schneider, R.; Weil, W.; Gruber, P. M. (ed.); Wills, J. M. (ed.), Zonoids and related topics, 296-317 (1983), Basel · Zbl 0524.52002 · doi:10.1007/978-3-0348-5858-8_13
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.