×

The inverse backscattering problem in three dimensions. (English) Zbl 0706.35136

This article is a study of the mapping from a potential q(x) on \({\mathbb{R}}^ 3\) to the backscattering amplitude associated with the Hamiltonian \(-\Delta +q(x)\). The backscattering amplitude is the restriction of the scattering amplitude a(\(\theta\),\(\omega\),k), \((\theta,\omega,k)\in S^ 2\times S^ 2\times {\mathbb{R}}_+\), to a(\(\theta\),-\(\theta\),k). We show that in suitable (complex) Banach spaces the map from q(x) to a(x/\(| x|,-x/| x|,| x|)\) is usually a local diffeomorphism. Hence in contrast to the overdetermined problem of recovering q from the full scattering amplitude the inverse backscattering problem is well posed.
When one wishes to obtain analogous results for real-valued potentials q, it is necessary to further restrict the scattering data. We consider the mapping from real-valued q to \[ (a(x/| x|,-x/| x|,| x|)+\bar a(-x/| x|,x/| x|,| x|)). \] However, the proof that this is usually a diffeomorphism is only given for q without bound states in this paper. The general proof will appear in the Proceedings of the Workshop on Spectral and Scattering Theory of Partial Differential Operators, Jerusalem, June 12-15, 1990.
Reviewer: G.Eskin

MSC:

35R30 Inverse problems for PDEs
35P25 Scattering theory for PDEs
35J10 Schrödinger operator, Schrödinger equation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agmon, S.: Spectral properties of Schroedinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. II,2, 151-218 (1975) · Zbl 0315.47007
[2] Beals, R., Coifman, R.: Multi-dimensional inverse scatterings and nonlinear partial differential equations. Proc. Symp. Pure Math. vol.43, (Notre Dame, 1984), pp. 45-70. Providence, RI: AMS 1985
[3] Faddeev, L. D.: Mathematical aspects of the three body problem. Steklov Inst., Moscow 1963, vol. 69
[4] Faddeev, L. D.: Inverse problem of quantum scattering theory, II. J. Sov. Math.5, 334-396 (1976) · Zbl 0373.35014 · doi:10.1007/BF01083780
[5] Friedrichs, K. O.: Perturbations of spectra in Hilbert spaces. Providence, RI. AMS 1965 · Zbl 0142.11001
[6] Novikov, R. G., Khenkin, G. M.: The \(\bar \partial \) -equation in the multidimensional inverse scattering problem. Russ. Math. Surv.,42, 109-180 (1987) · Zbl 0674.35085 · doi:10.1070/RM1987v042n03ABEH001419
[7] Melin, A.: Some mathematical problems in inverse potential scattering. Sem. Equations aux Derivées Partielles 1986-87, Exp XX, Ecole Polytechnique
[8] Bayliss, A., Li, Y., Morawetz, C.: Scattering by potential by hyperbolic methods. Math. Comput. (to appear) · Zbl 0692.65068
[9] Nachman, A., Ablowitz, M.: A multidimensional inverse scattering method. Stud. App. Math.71, 243-250 (1984) · Zbl 0557.35032
[10] Nachbin, L.: Topology on spaces of holomorphic mappings. Ergebnisse der Mathematik und ihrer Grenzgebiete vol.47. Berlin, Heidelberg, New York: Springer 1969 · Zbl 0172.39902
[11] Newton, R.: Inverse scattering II, III, IV. J. Math. Phys.21, 1698-1715 (1980); J. Math. Phys.22, (1981); (Correction, J. Math. Phys.23, 693 (1982); J. Math. Phys.23, 594-604 (1982) · Zbl 0456.35070 · doi:10.1063/1.524637
[12] Pöschel, J., Trubowitz, E.: Inverse spectral theory. New York: Academic Press 1987 · Zbl 0623.34001
[13] Prosser, R. T.: Formal solutions of inverse scattering problems I, II, III. J. Math. Phys.10, 1819-1822 (1969); J. Math. Phys.17, 1775-1779 (1976) and J. Math. Phys.21, 2648-2653 (1980) · doi:10.1063/1.1664766
[14] Stein, E.: Singular integrals and differentiability properties of functions. Princeton, NJ: Princeton University Press 1970 · Zbl 0207.13501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.