×

Spectral asymptotics for the Schrödinger operator with potential which steadies at infinity. (English) Zbl 0704.35110

From the author’s summary: “We consider the discrete spectrum of the selfadjoint Schrödinger operator \(A_ h=-h^ 2\Delta +V\) defined in \(L^ 2({\mathbb{R}}^ m)\) with potential V which steadies at infinity, i.e. \(V(x)=g+| x|^{-\alpha}f(1+o(1))\) as \(| x| \to \infty\) for \(\alpha >0\) and some homogeneous functions g and f of order O.
Reviewer: D.Robert

MSC:

35P20 Asymptotic distributions of eigenvalues in context of PDEs
35J10 Schrödinger operator, Schrödinger equation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alsholm, P.K., Kato, T.: Scattering with long range potentials. Proc. Symp. Pure Math.23, 393-399 (1973) · Zbl 0263.47008
[2] Birman, M.Sh., Solomjak, M.Z.: Quantitative analysis in Sobolev imbedding theorems and applications to spectral theory. AMS Translations, Series 2, Providence, R.I., 1980
[3] Davies, E.B., Simon, B.: Scattering theory for systems with different spatial asymptotics on the left and right. Commun. Math. Phys.63, 277-301 (1978) · Zbl 0393.34015 · doi:10.1007/BF01196937
[4] Gurarie, D.: Nonclassical eigenvalue asymptotics for operators of Schrödinger type. Bull. AMS15, 233-237 (1986) · Zbl 0628.35076 · doi:10.1090/S0273-0979-1986-15488-1
[5] Helffer, B., Mohamed, A.: Caractérisation du spectre essentiel de l’operateur de Schrödinger avec un champ magnétique. Ann. Inst. Fourier38, 95-112 (1988) · Zbl 0638.47047
[6] Ivrii, V. Ya.: Asymptotics of the discrete spectrum for some operators in ?d. Funkc. Anal. i Prilozhen.19, 73-74 (1985) (Russian) · Zbl 0565.58020 · doi:10.1007/BF01086037
[7] Klein, O.: Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac. Z. Physik53, 157-165 (1929) · JFM 55.0527.04 · doi:10.1007/BF01339716
[8] Levendorskii, S.Z.: Spectral asymptotics of differential operators with operator coefficients and applications. Dokl. Akad. Nauk SSSR280, 1303-1306 (1985) (Russian)
[9] Raikov, G.D.: Spectral asymptotics for the Schrödinger operator with a stabilizing potential. In: Proceedings of Symp. Part. Diff. Equ., Holzhau 1988. Teubner-Texte zur Mathematik.112, 223-228 (1989)
[10] Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. New York: Academic Press 1978 · Zbl 0401.47001
[11] Robert, D.: Comportement asymptotique des valeurs propres d’opérateurs de Schrödinger à potentiel ?dégénéré?. J. Math. Pures Appl.61, 275-300 (1982) · Zbl 0511.35069
[12] Ruijenaars, S., Bongaarts, P.: Scattering theory for one-dimensional step potentials. Ann. Inst. Henri Poincaré26A, 1-17 (1977)
[13] Simon, B.: Nonclassical eigenvalue asymptotics. J. Funct. Anal.53, 84-98 (1983) · Zbl 0529.35064 · doi:10.1016/0022-1236(83)90047-2
[14] Solomjak, M.Z.: Spectral asymptotics of Schrödinger operators with non-regular homogeneous potential. Mat. Sb.127, 21-39 (1985) (Russian)
[15] Tamura, H.: Asymptotic formulas with sharp remainder estimates for bound states for Schrödinger operators. J. Analys. Math., I:40, 166-182 (1981); II:41, 85-108 (1982) · Zbl 0501.35063 · doi:10.1007/BF02790161
[16] Tamura, H.: The asymptotic formulas for the number of bounded states in the strong coupling limit. J. Math. Soc. Jpn.36, 355-374 (1984) · Zbl 0612.35101 · doi:10.2969/jmsj/03630355
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.