×

Generic Torelli theorem for hypersurfaces of certain compact homogeneous Kähler manifolds. (English) Zbl 0704.14006

The article under review contains a version of the generic Torelli theorem for hypersurfaces of a simply connected compact homogeneous Kähler manifold, i.e. a Kähler C-space whose second Betti number \(equals\quad 1.\) The treatment follows the method of R. Donagi [Compos. Math. 50, 325-353 (1983; Zbl 0598.14007)] which was originally applied to the case of projective hypersurfaces.
Reviewer: M.Roczen

MSC:

14C34 Torelli problem
14K30 Picard schemes, higher Jacobians
14J70 Hypersurfaces and algebraic geometry

Citations:

Zbl 0598.14007
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. Borel, Kählerian coset spaces of semisimple Lie groups , Proc. Nat. Acad. Sci. U. S. A. 40 (1954), 1147-1151. JSTOR: · Zbl 0058.16002 · doi:10.1073/pnas.40.12.1147
[2] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, I , Amer. J. Math. 80 (1958), 458-538. JSTOR: · Zbl 0097.36401 · doi:10.2307/2372795
[3] A. Borel and R. Remmert, Über kompakte homogene Kählersche Mannigfaltigkeiten , Math. Ann. 145 (1961/1962), 429-439. · Zbl 0111.18001 · doi:10.1007/BF01471087
[4] R. Bott, Homogeneous vector bundles , Ann. of Math. (2) 66 (1957), 203-248. · Zbl 0094.35701 · doi:10.2307/1969996
[5] J. A. Carlson and P. A. Griffiths, Infinitesimal variations of Hodge structure and the global Torelli problem , Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980, pp. 51-76. · Zbl 0479.14007
[6] D. Cox, R. Donagi, and L. Tu, Variational Torelli implies generic Torelli , Invent. Math. 88 (1987), no. 2, 439-446. · Zbl 0594.14011 · doi:10.1007/BF01388918
[7] R. Donagi, Generic Torelli for projective hypersurfaces , Compositio Math. 50 (1983), no. 2-3, 325-353. · Zbl 0598.14007
[8] R. Donagi and M. Green, A new proof of the symmetrizer lemma and a stronger weak Torelli theorem for projective hypersurfaces , J. Differential Geom. 20 (1984), no. 2, 459-461. · Zbl 0599.14005
[9] R. Donagi and L. Tu, Generic Torelli for weighted hypersurfaces , Math. Ann. 276 (1987), no. 3, 399-413. · Zbl 0588.14003 · doi:10.1007/BF01450837
[10] H. Flenner, The infinitesimal Torelli problem for zero sets of sections of vector bundles , Math. Z. 193 (1986), no. 2, 307-322. · Zbl 0613.14010 · doi:10.1007/BF01174340
[11] M. Green, Koszul cohomology and the geometry of projective varieties , J. Differential Geom. 19 (1984), no. 1, 125-171. · Zbl 0559.14008
[12] M. Green, The period map for hypersurface sections of high degree of an arbitrary variety , Compositio Math. 55 (1985), no. 2, 135-156. · Zbl 0588.14004
[13] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces , Pure and Applied Mathematics, vol. 80, Academic Press, New York, 1978. · Zbl 0451.53038
[14] J. Humphreys, Introduction to Lie Algebras and Representation Theory , Springer-Verlag, New York, Heidelberg, Berlin, 1972. · Zbl 0254.17004
[15] Y. Kawamata, On deformations of compactifiable complex manifolds , Math. Ann. 235 (1978), no. 3, 247-265. · Zbl 0363.32015 · doi:10.1007/BF01420124
[16] 1 Y. Kimura, On the hypersurfaces of Hermitian symmetric spaces of compact type , Osaka J. Math. 16 (1979), no. 1, 97-119. · Zbl 0416.32021
[17] 2 Y. Kimura, On the hypersurfaces of Hermitian symmetric spaces of compact type, II , Osaka J. Math. 17 (1980), no. 2, 455-469. · Zbl 0464.32018
[18] Y. Kimura, A hypersurface of the irreducible Hermitian symmetric space of type EIII , Osaka J. Math. 16 (1979), no. 2, 431-438. · Zbl 0422.32026
[19] K. Kodaira and D. C. Spencer, On deformations of complex analytic structures I, II , Ann. of Math. (2) 67 (1958), 328-466. JSTOR: · Zbl 0128.16901 · doi:10.2307/1970009
[20] K. Konno, Infinitesimal Torelli theorem for complete intersections in certain homogeneous Kähler manifolds , Tohoku Math. J. (2) 38 (1986), no. 4, 609-624. · Zbl 0627.14009 · doi:10.2748/tmj/1178228413
[21] K. Konno, Homogeneous hypersurfaces in Kähler \(C\)-spaces with \(b_ 2 = 1\) , J. Math. Soc. Japan 40 (1988), no. 4, 687-703. · Zbl 0683.53059 · doi:10.2969/jmsj/04040687
[22] B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem , Ann. of Math. (2) 74 (1961), 329-387. JSTOR: · Zbl 0134.03501 · doi:10.2307/1970237
[23] H. Nakagawa and R. Takagi, On locally symmetric Kaehler submanifolds in a complex projective space , J. Math. Soc. Japan 28 (1976), no. 4, 638-667. · Zbl 0328.53009 · doi:10.2969/jmsj/02840638
[24] C. Peters and J. H. M. Steenbrink, Infinitesimal variations of Hodge structure and the generic Torelli problem for projective hypersurfaces (after Carlson, Donagi, Green, Griffiths, Harris) , Classification of algebraic and analytic manifolds (Katata, 1982), Progr. Math., vol. 39, Birkhäuser Boston, Boston, MA, 1983, pp. 399-463. · Zbl 0523.14009
[25] M.-H. Saito, Weak global Torelli theorem for certain weighted projective hypersurfaces , Duke Math. J. 53 (1986), no. 1, 67-111. · Zbl 0606.14031 · doi:10.1215/S0012-7094-86-05304-4
[26] M.-H. Saito, Generic Torelli theorem for hypersurfaces in compact irreducible Hermitian symmetric spaces , preprint. (Anouncement: Proc. Japan Acad. 61 (1985), 321-324). · Zbl 0592.14030 · doi:10.3792/pjaa.61.321
[27] M.-H. Saito, Y. Shimizu, and S. Usui, Variation of mixed Hodge structure and the Torelli problem , Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland Publ. & Kinokuniya Book-store, 1987, pp. 649-693. · Zbl 0643.14005
[28] Y. Sakane, On non-singular hyperplane sections of some Hermitian symmetric spaces , Osaka J. Math. 22 (1985), no. 1, 107-121. · Zbl 0565.53044
[29] Y. Sakane and M. Takeuchi, On defining equations of symmetric submanifolds in complex projective spaces , J. Math. Soc. Japan 33 (1981), no. 2, 267-279. · Zbl 0486.32019 · doi:10.2969/jmsj/03320267
[30] M. Takeuchi, Cell decompositions and Morse equalities on certain symmetric spaces , J. Fac. Sci. Univ. Tokyo Sect. I 12 (1965), 81-192 (1965). · Zbl 0144.22804
[31] H. C. Wang, Closed manifolds with homogeneous complex structure , Amer. J. Math. 76 (1954), 1-32. JSTOR: · Zbl 0055.16603 · doi:10.2307/2372397
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.